Участник:Александр Куваев/Алгоритм кластеризации, основанный на максимизации ожидания: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 18: Строка 18:
  
 
EM-алгоритм позволяет значительно упростить задачу максимизации правдоподобия выборки путем искусственного введения вспомогательной матрицы скрытых переменных <math>G</math>. Алгоритм заключается в последовательном повторении шагов E(expectation) и M(maximization):
 
EM-алгоритм позволяет значительно упростить задачу максимизации правдоподобия выборки путем искусственного введения вспомогательной матрицы скрытых переменных <math>G</math>. Алгоритм заключается в последовательном повторении шагов E(expectation) и M(maximization):
* На шаге E на основе текущего приближения параметров смеси по формуле Байеса вычисляются ожидаемые значения скрытых переменных <math>g_{i,j}</math> — апостериорные вероятности того, что <math>i</math>-й объект принадлежит кластеру <math>j</math>.
+
* На шаге E на основе текущего приближения параметров смеси по формуле Байеса вычисляются ожидаемые значения скрытых переменных <math>g_{ij}</math> — апостериорные вероятности того, что <math>i</math>-й объект принадлежит кластеру <math>j</math>.
 
* На шаге M решается задача максимизации правдоподобия для нахождения следующего приближения параметров смеси на основе текущего приближения и матрицы скрытых переменных.
 
* На шаге M решается задача максимизации правдоподобия для нахождения следующего приближения параметров смеси на основе текущего приближения и матрицы скрытых переменных.
  

Версия 03:24, 13 октября 2016

Авторы описания: Куваев А.С. и Щенявская Е.В.

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Задача кластеризации заключается в разбиении входного множества объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались друг от друга.

Решение этой задачи принципиально неоднозначно по следующим причинам:

  1. результат кластеризации зависит от способа задания меры сходства объектов выборки
  2. не существует однозначно наилучшего критерия качества кластеризации
  3. число кластеров, как правило, неизвестно заранее и задается из некоторых априорных соображений (хотя существуют алгоритмы, способные определять число кластеров автоматически)

По описанной выше причине существует большое число алгоритмов кластеризации, приводящих к различным разбиениям исходного множества объектов. На этой странице представлено описание одного из таких методов — EM-алгоритма. EM-алгоритм опирается на предположение о вероятностной природе данных: элементы выборки получены случайно и независимо из смеси распределений с фиксированным числом компонент [math]k[/math]. Таким образом, плотность распределения на множестве объектов имеет следующий вид:

[math]p(x)=\sum_{j=1}^{k}w_{j}p_{j}(x), \sum_{j=1}^{k}w_{j}=1, w_{j} \ge 0 [/math], где [math]p_{j}[/math] - плотность распределения [math]j[/math]-й компоненты смеси.

В дальнейшем будем предполагать, что [math]p_{j}[/math] имеют вид многомерных нормальных плотностей с произвольной матрицей ковариации: смеси нормальных распределений позволяют аппроксимировать произвольные непрерывные функции плотности с наперед заданной точностью. Результатом работы EM-алгоритма являются оценки априорных вероятностей компонент смеси [math]w_{j}[/math], а также оценки векторов математических ожиданий и матриц ковариации для каждой компоненты.

EM-алгоритм позволяет значительно упростить задачу максимизации правдоподобия выборки путем искусственного введения вспомогательной матрицы скрытых переменных [math]G[/math]. Алгоритм заключается в последовательном повторении шагов E(expectation) и M(maximization):

  • На шаге E на основе текущего приближения параметров смеси по формуле Байеса вычисляются ожидаемые значения скрытых переменных [math]g_{ij}[/math] — апостериорные вероятности того, что [math]i[/math]-й объект принадлежит кластеру [math]j[/math].
  • На шаге M решается задача максимизации правдоподобия для нахождения следующего приближения параметров смеси на основе текущего приближения и матрицы скрытых переменных.
Рисунок 1. Визуализация компонент смеси после некоторых итераций алгоритма в двумерном пространстве признаков. Для каждой компоненты эллипсами выделены доверительные области с уровнями доверия 0.9, 0.95 и 0.99.

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература