Участник:Александр Куваев/Алгоритм кластеризации, основанный на максимизации ожидания

Материал из Алговики
Перейти к навигации Перейти к поиску

Авторы описания: Куваев А.С. и Щенявская Е.В.

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Задача кластеризации заключается в разбиении входного множества объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались друг от друга.

Решение этой задачи принципиально неоднозначно по следующим причинам:

  1. результат кластеризации зависит от способа задания меры сходства объектов выборки
  2. не существует однозначно наилучшего критерия качества кластеризации
  3. число кластеров, как правило, неизвестно заранее и задается из некоторых априорных соображений (хотя существуют алгоритмы, способные определять число кластеров автоматически)

По описанной выше причине существует большое число алгоритмов кластеризации, приводящих к различным разбиениям исходного множества объектов. На этой странице представлено описание одного из таких методов — EM-алгоритма. EM-алгоритм опирается на предположение о вероятностной природе данных: элементы выборки получены случайно и независимо из смеси распределений с фиксированным числом компонент [math]k[/math]. Таким образом, плотность распределения на множестве объектов имеет следующий вид:

[math]p(x)=\sum_{j=1}^{k}w_{j}p_{j}(x), \ \sum_{j=1}^{k}w_{j}=1, \ w_{j} \ge 0 [/math], где [math]p_{j}[/math] - плотность распределения [math]j[/math]-й компоненты смеси.

Везде в дальнейшем будем предполагать, что [math]p_{j}[/math] имеют вид многомерных нормальных плотностей с произвольной матрицей ковариации: смеси нормальных распределений позволяют аппроксимировать произвольные непрерывные функции плотности с наперед заданной точностью. Результатом работы EM-алгоритма являются оценки априорных вероятностей компонент смеси [math]w_{j}[/math], а также оценки векторов математических ожиданий и матриц ковариации для каждой компоненты.

EM-алгоритм позволяет значительно упростить задачу максимизации правдоподобия выборки путем искусственного введения вспомогательной матрицы скрытых переменных [math]G[/math]. Алгоритм заключается в последовательном повторении шагов E(expectation) и M(maximization):

  • На шаге E на основе текущего приближения параметров смеси по формуле Байеса вычисляются ожидаемые значения скрытых переменных [math]g_{ij}[/math] — апостериорные вероятности того, что [math]i[/math]-й объект принадлежит кластеру [math]j[/math].
  • На шаге M решается задача максимизации правдоподобия для нахождения следующего приближения параметров смеси на основе текущего приближения и матрицы скрытых переменных, при этом решение этой задачи выписывается в явном виде.
Рисунок 1. Визуализация компонент смеси после некоторых итераций алгоритма в двумерном пространстве признаков. Для каждой компоненты эллипсами выделены доверительные области с уровнями доверия 0.9, 0.95 и 0.99.

1.2 Математическое описание алгоритма

Пусть заданы [math]l[/math] объектов [math]x_{1},\dotsc,x_{l}[/math], каждый из которых описывается [math]n[/math] числовыми признаками. Таким образом, определена матрица объектов-признаков [math]X \in \R^{l \times n}[/math]. Предполагается, что объекты выбраны случайно и независимо из смеси [math]n[/math]-мерных нормальных распределений с фиксированным числом компонент [math]k[/math]. Плотность распределения на множестве объектов имеет вид:

[math]p(x)=\sum_{j=1}^{k}w_{j}p_{j}(x), \ \sum_{j=1}^{k}w_{j}=1, \ w_{j} \ge 0 [/math], где [math]p_{j}[/math] - плотность распределения [math]j[/math]-й компоненты смеси.

Каждая компонента смеси описывается [math]n[/math]-мерным вектором математических ожиданий [math]\mu_{j}[/math] и матрицей ковариации [math]\Sigma_{j}[/math] порядка [math]n[/math], [math]j = 1,\dotsc,k[/math].

Исходные данные: матрица объектов-признаков [math]X[/math], число кластеров [math]k[/math], максимальное число итераций [math]imax[/math].

Вычисляемые данные: набор оценок весов, математических ожиданий и ковариационных матриц компонент смеси [math]\theta = (w_{1},...,w_{k}; \; \mu_{1},...,\mu_{k}; \; \Sigma_{1},...,\Sigma_{k})[/math], максимизирующий правдоподобие выборки.

Структура алгоритма:

  • Инициализация параметров: существует большое число вариантов инициальзации параметров распределения. Один из возможных подходов - задание векторов математических ожиданий компонент случайными элементами выборки, задание матриц ковариации единичными матрицами и задание весов компонент равными [math]\frac{1}{k}[/math].
  • Последовательное выполнение шагов E и M до тех пор, пока правдоподобие выборки не стабилизируется или не будет достигнуто максимальное число итераций:
    • Шаг E: вычисление значений скрытых переменных по формуле Байеса:
[math]g_{ij} = \frac{w_{j} p_{j}(x_{i})}{\sum_{s=1}^{k} w_{s} p_{s}(x_{i})}, \ i = 1,\dotsc,l; \ j = 1,\dotsc,k [/math] , где [math]p_{j}(x_{i}) = \frac{1}{(2\pi)^{n/2}\sqrt{|\Sigma_{j}|}} \exp \biggl( -\frac{1}{2}(x_{i} - \mu_{j})^{T} \Sigma_{j}^{-1} (x_{i} - \mu_{j}) \biggr) [/math]
    • Шаг M: перерасчет параметров смеси на основе текущего приближения и матрицы скрытых переменных:
[math]w_{j} = \frac{1}{l} \sum_{i=1}^{l} g_{ij}, \ j = 1,\dotsc,k;[/math]
[math]\mu_{j} = \frac{1}{l w_{j}} \sum_{i=1}^{l} g_{ij} x_{i}, \ j = 1,\dotsc,k;[/math]
[math]\Sigma_{j} = \frac{1}{l w_{j}} \sum_{i=1}^{l} g_{ij}(x_{i} - \mu_{j})(x_{i} - \mu_{j})^T, \ j = 1,\dotsc,k.[/math]

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература