Участник:Максим: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 79: Строка 79:
  
 
  <math> Y_{k+1}=\frac{1}{6}(m_1+2m_2+2m_3+m_4),...</math>
 
  <math> Y_{k+1}=\frac{1}{6}(m_1+2m_2+2m_3+m_4),...</math>
 +
 +
Приведенные выше шаги выполняются в цикле m раз, где m-размер сетки. На первом шаге вычисляется очередная точка на сетке. На втором шаге считаются необходимые коэффициенты метода Рунге-Кутты для каждой зависимой переменной (4 коэффициента для каждой переменной). На третьем шаге получаем значения зависимых переменных на очередной итерации.
  
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===

Версия 18:09, 30 ноября 2016


Автором статьи является Амбарцумян М.Е.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Ме́тод Ру́нге — Ку́тты 4-го порядка — важный итерационный метод численного решения систем обыкновенных дифференциальных уравнений. Он был разработан около 1900 года немецкими математиками К. Рунге и М. В. Куттой. Для численного решения системы на отрезке, на котором определена независимая переменная, задается сетка с некоторым маленьким шагом. Последовательно, на каждом шаге, вычисляем значения зависимых переменных через значения зависимых переменных на предыдущем шаге по формулам Рунге-Кутты.

1.2 Математическое описание алгоритма

Рассматривается следующая система ОДУ:

[math] \begin{align} X^'=f(t,X,Y,...)\\ Y^'=g(t,X,Y,...),... \end{align} [/math]

и т.д.

с начальным условием [math] X(t_0)=X_0,Y(t_0)=Y_0,... [/math]

Пусть h-шаг сетки, тогда имеем следующие формулы Рунге-Кутты численного решения системы:

[math] \begin{align} t_{k+1}=t_{k}+h\\ X_{k+1}=\frac{1}{6}(k_1+2k_2+2k_3+k_4),\\ Y_{k+1}=\frac{1}{6}(m_1+2m_2+2m_3+m_4),...,\\ k_1=f(t_k,X_k,Y_k,...)h,\\ m_1=g(t_k,X_k,Y_k,...)h,...,\\ k_2=f(t_k+\frac{h}{2},X_k+\frac{k_1}{2},Y_k+\frac{m_1}{2},...)h,\\ m_2=g(t_k+\frac{h}{2},X_k+\frac{k_1}{2},Y_k+\frac{m_1}{2},...)h,...,\\ k_3=f(t_k+\frac{h}{2},X_k+\frac{k_2}{2},Y_k+\frac{m_2}{2},...)h,\\ m_3=g(t_k+\frac{h}{2},X_k+\frac{k_2}{2},Y_k+\frac{m_2}{2},...)h,...,\\ k_4=f(t_k+h,X_k+k_3,Y_k+m_3,...)h,\\ m_4=g(t_k+h,X_k+k_3,Y_k+m_3,...)h,...\\ \end{align} [/math]

1.3 Вычислительное ядро алгоритма

Вычислительное ядро метода Рунге-Кутты можно составить из множественных вычислений функций f,g,... и т.д.


1.4 Макроструктура алгоритма

Как и записано в предыдущем пункте основную часть метода составляют множественные вычисления значений функций от нескольких переменных f,g,... и т.д.

1.5 Схема реализации последовательного алгоритма

Последовательность исполнения метода следующая:

[math] 1. t_{k+1}=t_{k}+h [/math]
[math] 2. k_1=f(t_k,X_k,Y_k,...)h,[/math]
[math]   m_1=g(t_k,X_k,Y_k,...)h,...,[/math]
[math]  k_2=f(t_k+\frac{h}{2},X_k+\frac{k_1}{2},Y_k+\frac{m_1}{2},...)h,[/math]
[math]  m_2=g(t_k+\frac{h}{2},X_k+\frac{k_1}{2},Y_k+\frac{m_1}{2},...)h,...,[/math]
[math]  k_3=f(t_k+\frac{h}{2},X_k+\frac{k_2}{2},Y_k+\frac{m_2}{2},...)h,[/math]
[math]   m_3=g(t_k+\frac{h}{2},X_k+\frac{k_2}{2},Y_k+\frac{m_2}{2},...)h,...,[/math]
[math]  k_4=f(t_k+h,X_k+k_3,Y_k+m_3,...)h,[/math]
[math]  m_4=g(t_k+h,X_k+k_3,Y_k+m_3,...)h,...[/math]
[math] 3. X_{k+1}=\frac{1}{6}(k_1+2k_2+2k_3+k_4),[/math]
[math] Y_{k+1}=\frac{1}{6}(m_1+2m_2+2m_3+m_4),...[/math]

Приведенные выше шаги выполняются в цикле m раз, где m-размер сетки. На первом шаге вычисляется очередная точка на сетке. На втором шаге считаются необходимые коэффициенты метода Рунге-Кутты для каждой зависимой переменной (4 коэффициента для каждой переменной). На третьем шаге получаем значения зависимых переменных на очередной итерации.

1.6 Последовательная сложность алгоритма

Пусть m-число узлов сетки, n-размерность системы ОДУ. Тогда найдем количество операций, требуемое для решения задачи.

Общая последовательная сложность алгоритма О(nm)

1. Сложений

[math] (7n+2)m [/math]

2. Умножений

[math] 4nm [/math]

3. Делений

[math] (4n+1)m [/math]

4. Вычислений значения многомерной функции

[math] 4nm [/math]

1.7 Информационный граф

Рисунок 1. Граф алгоритма. Кружками обозначены операции вычисления функций f,g и т.д.

По оси OX происходит операция вычисления функции [math] f,g [/math] и т.д. По оси OY происходит вычисление коэффициентов [math] k_1,k_2,k_3,k_4;m_1,m_2,m_3,m_4 [/math] и т.д. По оси OZ вычисление вектора функций [math] Y_{k+1} [/math] на очередном шаге. Вообще говоря, информационный граф четырехмерен, так как на четвертой оси будут располагаться последовательные итерации [math] Y_{k+1},Y_{k+2} [/math] и т.д.

1.8 Ресурс параллелизма алгоритма

Для численного решения системы методом Рунге-Кутты в параллельном варианте требуется выполнить следующие ярусы (m-размер сетки, n-число уравнений):

1. [math] (3n+6)m [/math] ярусов сложений

2. [math] 4m [/math] ярусов умножений

3. [math] (3n+2)m [/math] ярусов делений

4. [math] 4m [/math] ярусов вычислений значения многомерной функции


1.9 Входные и выходные данные алгоритма

Входные данные: вектор начальных данных размером n, вектор функций размером n

Выходные данные: вектор значений функций в конечный момент времени размером n.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

В простейшем варианте алгоритм можно записать на языке Delphi следующим образом:

unit RK_Method;

interface

type
        TVarsArray = array of Extended; // вектор переменных включая независимую
        TInitArray = array of Extended; // вектор начальных значений
        TFunArray = array of function(VarsArray: TVarsArray ):Extended;
        // вектор функций
        TResArray = array of array of Extended; // матрица результатов
        TCoefsArray = array of Extended; // вектор коэффициетов метода

function Runge_Kutt(  // метод Рунге-Кутта
        FunArray: TFunArray; // массив функций
        First: Extended; // начальная точка по независимой координате
        Last: Extended; // конечная точка по независимой координате
        Steps: Integer; // число шагов по независимой координате
        InitArray: TInitArray; // вектор начальных значений
        var Res: TResArray // матрица результатов включая независ. переменную
         ):Word; 
       // возвращаемое значение - код ошибки

implementation

Function Runge_Kutt(  // метод Рунге-Кутта
        FunArray: TFunArray; // массив функций
        First: Extended; // начальная точка по независимой координате
        Last: Extended; // конечная точка по независимой координате
        Steps: Integer; // число шагов по независимой координате
        InitArray: TInitArray; // вектор начальных значений
        var Res: TResArray // матрица результатов включая независ. переменную
         ):Word; // возвращаемое значение - код ошибки
var
        Num: Word; // число уравнений
        NumInit: Word; // число начальных условий
        Delt: Extended; // шаг разбиения
        Vars: TVarsArray; // вектор переменных включая независимую
        Vars2,Vars3,Vars4: TVarsArray; // значения перем. для 2-4 коэф.
        Coefs1: TCoefsArray; // вектор 1-ыx коэффициентов в методе
        Coefs2: TCoefsArray; // вектор 2 коэффициентов в методе
        Coefs3: TCoefsArray; // вектор 3 коэффициентов в методе
        Coefs4: TCoefsArray; // вектор 4 коэффициентов в методе
        I: Integer; // счетчик цикла по иттерациям
        J: Word; // индекс коэф.-тов метода
        K: Integer; // счетчик прочих циклов
begin
 Num:=Length(FunArray); // узнаем число уравнений
 NumInit:=Length(InitArray); // узнаем число начальных условий
 If NumInit<>Num then
   begin
     Result:=100; // код ошибки 100: число уравнений не равно числу нач. усл.
     Exit;
   end;
 Delt:=(Last-First)/Steps; // находим величину шага разбиений
 SetLength(Res,Num+1,Steps+1); // задаем размер матрицы ответов с незав. перем.
 SetLength(Vars,Num+1); // число переменных включая независимую
 SetLength(Vars2,Num+1); // число переменных для 2-го коэф. включая независимую
 SetLength(Vars3,Num+1); // число переменных для 3-го коэф. включая независимую
 SetLength(Vars4,Num+1); // число переменных для 4-го коэф. включая независимую
 SetLength(Coefs1,Num); // число 1-ыx коэф. метода по числу уравнений
 SetLength(Coefs2,Num); // число 2-ыx коэф. метода по числу уравнений
 SetLength(Coefs3,Num); // число 3-иx коэф. метода по числу уравнений
 SetLength(Coefs4,Num); // число 4-ыx коэф. метода по числу уравнений
 // Начальные значения переменных:
 Vars[0]:=First;
 For K:=0 to NumInit-1 do Vars[K+1]:=InitArray[K];
 For J:=0 to Num do Res[J,0]:=Vars[J]; // первая точка результата 
 For I:=0 to Steps-1 do // начало цикла иттераций
        begin
           For J:=0 to Num-1 do Coefs1[J]:=FunArray[J](Vars)*delt; // 1-й коэфф.
           // Находим значения переменных для второго коэф.
           Vars2[0]:=Vars[0]+delt/2;
           For K:=1 to Num do Vars2[K]:=Vars[K]+Coefs1[K-1]/2;
           For J:=0 to Num-1 do Coefs2[J]:=FunArray[J](Vars2)*delt; // 2-й коэф.
           // Находим значения переменных для третьго коэф.
           Vars3[0]:=Vars[0]+delt/2;
           For K:=1 to Num do Vars3[K]:=Vars[K]+Coefs2[K-1]/2;
           For J:=0 to Num-1 do Coefs3[J]:=FunArray[J](Vars3)*delt; // 3 коэфф.
           // Находим значения переменных для 4 коэф.
           Vars4[0]:=Vars[0]+delt;
           For K:=1 to Num do Vars4[K]:=Vars[K]+Coefs3[K-1];
           For J:=0 to Num-1 do Coefs4[J]:=FunArray[J](Vars4)*delt; // 4 коэфф.
           // Находим новые значения переменных включая независимую
           Vars[0]:=Vars[0]+delt;
           For K:=1 to Num do
           Vars[K]:=Vars[K]+
           (1/6)*(Coefs1[K-1]+2*(Coefs2[K-1]+Coefs3[K-1])+Coefs4[K-1]);
           // Результат  иттерации:
           For J:=0 to Num do Res[J,I+1]:=Vars[J];
        end; // конец итераций
 Result:=0; // код ошибки 0 - нет ошибок
end;

end.

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

1. Н.С.Бахвалов, Н.П.Жидков, Г.М. Кобельков. Численные методы