Участник:Малков Кирилл/Алгоритм бидиагонализации матрицы методом отражений

Материал из Алговики
Перейти к навигации Перейти к поиску

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Матрица [math]B = [b_{ij}][/math] называется (верхней) двухдиагональной, или бидиагональной, если [math]b_{ij} = 0[/math], [math]i \gt j[/math] или [math]i + 1 \lt j[/math]. Алгоритм бидиагонализации матрицы методом отражений приводит произвольную [math]n \times n[/math] матрицу A к бидиагональному виду [math]B = PAQ[/math], где [math]P[/math] и [math]Q[/math] - произведения конечного числа матриц отражения(или вращения).

1.2 Математическое описание алгоритма

Пусть дана матрица A размера [math]n \times n[/math]. Вычисляется бидиагональная матрица D размера [math]n \times n[/math], такая что [math]A = PDQ[/math] для некоторых матриц </math>P и Q, являющихся произведением некоторого числа матриц отражения.Сначала мы умножаем A слева на матрицу отражения, аннулирующую все поддиагональные элементы первого столбца. Затем умножаем результат справа на матрицу отражения, аннулирующую элементы первой строки в позициях с 3-й по n-ю. Далее умножением слева аннулируем все поддиагональные элементы второго столбца, затем умножением справа аннулируем получаем нули во второй строке в позициях с 4-й по n-ю и т.д. После каждого умножения на матрицу отражения все ранее полученные нули остаются. Формулы метода: Пусть [math]A = [a_1, a_2, ..., a_n][/math] [math]D_1 = A, P_1 = I, Q_1 = I.[/math] [math]Если i четное, то D_i = D_{i-1} * (I - 2 * u_{i-1} * u_{i-1}^*)[/math] [math]u_i = \frac{[0, 0, ..., 0, d_{i+1} - ||d_{i+1}||_2, d_{i+2}, ..., d_n]}{||[0, 0, ..., 0, d_{i+1} - ||d_{i+1}||_2, d_{i+2}, ..., d_n]||_2}, Q_i = (I - 2 * u_{i} * u_{i}^*) * Q_{i-1}, P_i = P_{i-1}.[/math] [math]Если i нечетное, то D_i = (I - 2 * u_{i-1} * u_{i-1}^*) * D_{i-1},[/math] [math]u_i = \frac{[0, 0, ..., 0, d_i - ||d_i||_2, d_{i+1}, ..., d_n]}{||[0, 0, ..., 0, d_i - ||d_i||_2, d_{i+1}, ..., d_n]||_2}, Q_i = Q_{i-1}, P_i = P_{i-1} * (I - 2 * u_{i} * u_{i}^*).[/math]

1.3 Вычислительное ядро алгоритма

Вычислительное ядро алгоритма составляет нахождение на каждом этапе матрицы отражения(всего [math]2 * n - 2[/math].

1.4 Макроструктура алгоритма

Операции скалярного произведения, умножения матрицы на вектор

1.5 Схема реализации последовательного алгоритма

[math]D_1 = A, P_1 = I, Q_1 = I.[/math] [math]1) для четного i : D_i = D_{i-1} * (I - 2 * u_{i-1} * u_{i-1}^*), Q_i = (I - 2 * u_{i} * u_{i}^*) * Q_{i-1}, P_i = P_{i-1};[/math] [math] для нечетного i : D_i = (I - 2 * u_{i-1} * u_{i-1}^*) * D_{i-1}, Q_i = Q_{i-1}, P_i = P_{i-1} * (I - 2 * u_{i} * u_{i}^*).[/math] [math]2) для четного i : u_i = \frac{[0, 0, ..., 0, d_{i+1} - ||d_{i+1}||_2, d_{i+2}, ..., d_n]}{||[0, 0, ..., 0, d_{i+1} - ||d_{i+1}||_2, d_{i+2}, ..., d_n]||_2},[/math] [math] для нечетного i : u_i = \frac{[0, 0, ..., 0, d_i - ||d_i||_2, d_{i+1}, ..., d_n]}{||[0, 0, ..., 0, d_i - ||d_i||_2, d_{i+1}, ..., d_n]||_2}.[/math]

1.6 Последовательная сложность

Для бидиагонализации матрицы порядка n методом отражений при последовательном варианте требуется: [math]1) 2 * n - 2[/math] вычислений квадратного корня, [math]2) 4 * n - 4 [/math]делений, [math]3) (4 * n - 4)(1 + n + n^2)[/math] умножений, [math]4) (4 * n - 4)(1 + n + n^2)[/math] сложений. Сложность последовательного алгоритма есть [math]O(n^3)[/math].

1.7 Информационный граф

=== При параллельном вычислении двухдиагональной матрицы методом отражений требуется последовательно выполнить следующие ярусы:
-- k ярусов с вычислением [math]4 * (n/k) - 4[/math] делений,
-- k ярусов с вычислением [math](4 * (n/k) - 4)(1 + n + n^2)[/math] умножений,
-- k ярусов с вычислением [math](4 * (n/k) - 4)(1 + n + n^2)[/math] сложений.
Получим, что параллельная сложность алгоритма есть [math]O(n^2)[/math].

1.8 Входные и выходные данные алгоритма

На вход подается матрица A и ее размер n. Выходные данные -- матрицы P, Q, D, такие что <math>A = P D Q <\math>

1.9 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов является линейным. Вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных, линейна.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

Для оптимальности работы алгоритма следует реализовать функцию умножения матрицы отражения матрицы отражения на произвольную матрицу, это заметно сократит время время его работы.

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

Алгоритм бидиагонализации матрицы довольно последователен: на каждом шаге считается матрица отражения, и распараллелить прямым образом алгоритм нельзя, поскольку каждый раз матрица отражения строится к новой матрице. Однако можно разбить Матрицу <math> D<\math> на блоки, и каждый процесс будет занят умножением матрицы отражения на соответствующий блок.

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

Параллельная реализация алгоритма наиболее эффективна на машинах с быстрым обменом данных меду процессами

2.7 Существующие реализации архитектур

3 Литература

Е. Е. Тыртышников, "Методы численного анализа".