Уровень алгоритма

Участник:Почернина Елена/Метод Якоби вычисления сингулярных чисел и векторов: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 28: Строка 28:
 
=== Информационный граф ===
 
=== Информационный граф ===
 
Опишем граф алгоритма как аналитически, так и в виде рисунка.
 
Опишем граф алгоритма как аналитически, так и в виде рисунка.
 +
 
'''Первая''' группа вершин расположена в двумерной области, соответствующая ей операция - вычисление <math>a_{jj}, a_{jk}, a_{kk}</math>.
 
'''Первая''' группа вершин расположена в двумерной области, соответствующая ей операция - вычисление <math>a_{jj}, a_{jk}, a_{kk}</math>.
 
Естественно введённые координаты области таковы:  
 
Естественно введённые координаты области таковы:  

Версия 23:27, 11 октября 2016


Метод Якоби вычисления сингулярных чисел и векторов
Последовательный алгоритм
Последовательная сложность [math]O(n^3)[/math]


Авторы статьи: Почернина Елена (группа 601), Костюкова Светлана (группа 601)

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод Якоби для вычисления сингулярных чисел и векторов является самым медленным из имеющихся алгоритмов поиска сингулярных чисел и векторов, но тем не менее, интерес к нему сохраняется. Для некоторых некоторых типов матриц [math]G[/math] он способен вычислять сингулярные числа и векторы намного точнее, чем другие методы. В частности, метод Якоби вычисляет сингулярные числа матрицы [math]G[/math] с высокой точностью, если G может быть представлена в виде [math]G = DX[/math], где [math]D[/math] – диагональная матрица, а [math]X[/math] – хорошо обусловлена. В этом случае заданная матрица обрабатывается без предварительного приведения к двухдиагональному виду, в то время как другие алгоритмы включают в себя приведение матрицы к двухдиагональной форме, из-за чего и теряют все верные разряды во всех сингулярных числах, кроме старшего.

1.2 Математическое описание алгоритма

Исходные данные: матрица [math]G[/math] (элементы [math]g_{ij}, i, j = 1, \ldots, n[/math]).

Вычисляемые данные: матрица [math]\Sigma = diag(\sigma_{i})[/math], где [math]\sigma_{i}[/math] - сингулярные числа, [math]U[/math] - матрица левых сингулярных векторов, [math]V[/math] - матрица правых сингулярных векторов.

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

Опишем граф алгоритма как аналитически, так и в виде рисунка.

Первая группа вершин расположена в двумерной области, соответствующая ей операция - вычисление [math]a_{jj}, a_{jk}, a_{kk}[/math]. Естественно введённые координаты области таковы:

  • [math]j[/math] — меняется в диапазоне от [math]1[/math] до [math]n-1[/math], принимая все целочисленные значения;
  • [math]k[/math] — меняется в диапазоне от [math]j+1[/math] до [math]n[/math], принимая все целочисленные значения.

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: плотная матрица [math]G[/math] (элементы [math]g_{ij}[/math]). Дополнительные ограничения:

  • [math]A= G^TG[/math] – симметрическая матрица, т. е. [math]a_{ij}= a_{ji}, i, j = 1, \ldots, n[/math].

Объём входных данных:

Выходные данные: матрица [math]\Sigma = diag(\sigma_{i})[/math], где [math]\sigma_{i}[/math] - сингулярные числа, матрица [math]U[/math] левых сингулярных векторов и матрица [math]V[/math] правых сингулярных векторов.

Объём выходных данных:

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма

Метод Якоби нахождения сингулярных значений и векторов реализован в библиотеке Intel MKL. В связи с тем, что алгоритм считается медленным, он не включен во многие известные пакеты.

3 Литература

1. Дж. Деммель Вычислительная линейная алгебра. Изд. Мир, 2001.