Участник:Lonalone/Генерация гауссовского вектора методом линейных преобразований

Материал из Алговики
Перейти к навигации Перейти к поиску

Автор описания: Меньших И. М.

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

В статье приведен алгоритм генерации n-мерного гауссовского случайного вектора с помощью метода линейных преобразований[1]. Этот метод является одним из наиболее распространенных так называемых корреляционных методов, применяемых в случаях, когда при моделировании непрерывного n-мерного случайного вектора достаточно обеспечить лишь требуемые значения элементов корреляционной матрицы и вектора математических ожиданий компонент(для случая нормального распределения выполнение названного требования означает выполнение достаточного условия полного статистического соответствия теоретического и моделируемого распределений[2]).

Идея алгоритма заключается в линейном преобразовании n-мерного случайного вектора [math]Y[/math], компоненты которого независимы и одинаково распределены по нормальному закону со стандартными параметрами, в случайный вектор [math]X[/math] с требуемыми корреляционной матрицей и вектором математических ожиданий.

1.2 Математическое описание алгоритма

1.2.1 Метод линейных преобразований

Даны ковариационная матрица [math]\Sigma[/math] и вектор математических ожиданий [math]M[/math]:

[math] \Sigma = \|\sigma_{ij}\| = \| \mathbb{E}[(X_{i} - m_{x_{i}})(X_{j} - m_{x_{j}})]\|, \\ M = (m_{x_{1}}, m_{x_{2}}, ..., m_{x_{n}})^T. [/math]

Требуется найти такую матрицу [math]B[/math], которая позволяла бы получить искомый вектор [math]X[/math] с требуемыми характеристиками в результате линейного преобразования [math]X = BY + M[/math], где [math]Y[/math] — n-мерный случайный вектор с независимыми нормально распределенными компонентами со стандартными параметрами.

Будем искать матрицу [math]B[/math] в виде нижней треугольной матрицы. Перейдем от матричной записи к системе алгебраических уравнений:

[math] \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix} = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\b_{21} & b_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} \times \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{pmatrix} + \begin{pmatrix} m_{x_{1}} \\ m_{x_{2}} \\ \vdots \\ m_{x_{n}} \end{pmatrix} \Rightarrow [/math]


[math] \begin{cases}X_{1} - m_{x_{1}} = b_{11}Y_{1} \\X_{2} - m_{x_{2}} = b_{21}Y_{1} + b_{22}Y_{2} \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\X_{n} - m_{x_{n}} = b_{n1}Y_{1} + b_{n2}Y_{2} + \cdots + b_{nn}Y_{n} \end{cases} [/math]


Поскольку компоненты вектора [math]Y[/math] независимы и имеют стандартные параметры, справедливо выражение:

[math] \mathbb{E}[Y_{i}Y_{j}] = \left\{\begin{matrix} 1, &i = j, \\ 0, &i \not= j. \end{matrix}\right. [/math]

Почленно перемножив сами на себя и между собой соответственно левые и правые части уравнений системы и взяв от результатов перемножения математическое ожидание, получаем систему уравнений вида:

[math] \begin{cases} \mathbb{E}[(X_{1} - m_{x_{1}})(X_{1} - m_{x_{1}})] = \mathbb{E}[b_{11}Y_{1}b_{11}Y_{1}], \\ \mathbb{E}[(X_{1} - m_{x_{1}})(X_{2} - m_{x_{2}})] = \mathbb{E}[(b_{21}Y_{1} + b_{22}Y_{2})b_{11}Y_{1}], \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \end{cases} [/math]

Таким образом, в левых частях полученной системы уравнений располагаются элементы заданной ковариационной матрицы [math]\Sigma[/math], а в правых — элементы искомой матрицы [math]B[/math]. Последовательно решая эту систему, получаем формулы для расчета элементов [math]\sigma_{ij}[/math]:

[math] b_{11}=\sqrt{\sigma_{11}}; b_{21}=\frac{\sigma_{12}}{\sqrt{\sigma_{11}}}; b_{22} = \sqrt{\sigma_{22} - \frac{\sigma_{12}}{\sigma_{11}}}, \cdots [/math]

Рекуррентная формула для расчета любого элемента матрицы преобразования [math]B[/math] имеет вид:

[math] b_{ij} = \frac {\sigma_{ij} - \sum_{k=1}^{j-1} b_{ik} b_{jk}} {\sqrt{\sigma_{ij} - \sum_{k=1}^{j-1} b_{jk}^2}}, \quad 1 \leqslant j \leqslant i \leqslant n [/math]

(суммы с верхним нулевым пределом считаются равными нулю)

1.2.2 Генерация случайного вектора Y

Пусть имеется генератор псевдослучайных чисел (ГПСЧ), с помощью которого можно получить реализацию случайной величины [math]u \sim U(0,1) [/math]. Описанный выше случайный вектор [math]Y=(y_1, \cdots, y_n)[/math] с независимыми компонентами составим из [math]n[/math] реализаций случайной величины [math]\eta \sim N(0,1)[/math]. Каждую такую реализацию [math]y_i[/math], в свою очередь, получим с помощью приближения по ЦПТ [math]k[/math] случайными величинами, распределенными равномерно на отрезке [0,1]:

[math] y_i = \frac {1} {\sqrt{\frac{k}{12}} } (\sum_{j=1}^k{u_j^i} - \frac{k}{2}), \forall i = 1, \cdots, n \\ [/math]

где [math]u_j^i - [/math] реализации случайной величины [math]u[/math], а [math]k - [/math] параметр, обеспечивающий качество приближения.

Как правило, [math]k[/math] берут равным 12 и считают, что для подавляющего числа практических задач обеспечивается должная точность вычислений[3].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. (п. 1.10.4) Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование. Методы Монте-Карло — М.: Академия, 2006. — 368 с.
  2. https://ru.wikipedia.org/wiki/Многомерное_нормальное_распределение
  3. Балдин К.В., Уткин В.Б. Информационные системы в экономике. — М.:Дашков и Кo, 2008. — 395 с.