Участник:MelLain/ЕМ-алгоритм (Тематическое моделирование): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 78: Строка 78:
  
 
Строгое обоснование данных формул можно получить с помощью теоремы Куна-Таккера.
 
Строгое обоснование данных формул можно получить с помощью теоремы Куна-Таккера.
 +
 +
==== Общие слова о модернизациях ====
 +
 +
Как уже было сказано, и как видно из описания выше, данный алгоритм сложно применять на практике в чистом виде из-за необходимости хранения трёхмерной матрицы <math>p(t\, | \,d, \,w)</math> и  двумерной матрицы <math>\Theta</math>, размеры которых зависят от количества обрабатываемых и данных, которых может быть очень много.
 +
 +
Для борьбы с описанной проблемой можно производить вычисления более рационально, отказавшись от хранения обеих матриц и вычисляя необходимы значения на лету. При наличии обученной модели <math>\Phi</math> получить векторы распределений <math>\theta_d</math> (если в этом есть необходимость) можно, произведя одну итерацию алгоритма, в ходе которой сама модель обновляться не будет.
 +
 +
В этом варианте адгоритма вычисление <math>\theta_d</math> будет перенесено с М-шага на Е-шаг, и для каждого нового документа этот вектор будет инициализироваться равномерным распределением. Для ускорения скорости сходимости можно производить итерации "пересчёт <math>p(t\, | \,d, \,w)</math>"-"обновление <math>\theta_d</math>" многократно в течении обработки одного документа.
 +
 +
В дальнейшем подобные итерации будем называть ''внутренними'', полный же однократный проход по всей коллекции будем называть итерацией ''внешней'.'
 +
 +
=== Вычислительное ядро алгоритма ===
 +
 +
Наиболее вычислительно затратной операцией в данном алгоритме является Е-шаг, в ходе которого рассчитываются вспомогательные переменные и векторы <math>\theta_d</math>. С введением внутренних итераций нагрузка на Е-шаг только увеличивается.
 +
 +
=== Макроуструктура алгоритма ===
 +
 +
В целом, высокоуровневое описание ЕМ-алгоритма состоит из самих Е-шага и М-шага. Е-шаг представляет собой набор операций, производимых в цикле по документам, что явно предоставляет возможность его распараллеливания. М-шаг занимает во много раз меньше времени и достаточно эффективно может выполняться в однопоточном режиме.
 +
 +
Впрочем, при наличии действительно больших данных можно задуматься и о параллелизме на М-шаге, но в данной статье этот вопрос не рассматривается.
 +
 +
  
 
== Литература ==
 
== Литература ==

Версия 01:48, 23 сентября 2016

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Тематическое моделирование - одно из направлений статистического анализа текстовых коллекций в машинном обучении. В литературе описываются многочисленные разновидности моделей, а также методов их обучения. В данной статье будет рассмотрена тематическая модель вероятностного латентного семантического анализа (PLSA), и процесс её обучения с помощью параллельного ЕМ-алгоритма.

Существует множество разновидностей ЕМ-алгоритмов, ориентированных на учёт тех или иные аспектов решаемой задачи. Наиболее простым вариантом является т.н. оффлайновый алгоритм, непригодный для работы с большими текстовыми данными в силу значительных требований к потребляемой оперативной памяти. Существует ряд модернизаций этого алгоритма, позволяющих избавить его от ряда недостатков. Наилучшей из них является онлайновый вариант алгоритма. Тем не менее, в силу относительно высокой сложности его эффективной параллельной реализации, в данной статье будет рассматриваться гибридный вариант алгоритма, избавленный от большинства недостатков оффлайнового, но имеющий меньшую скорость сходимости, чем онлайновый.

1.2 Математическое описание

1.2.1 Математическое описание модели

В большинстве тематических моделей коллекция текстов рассматривается в виде "мешка слов", т.е. модель учитывает только статистическую встречаемость слов в документах и никак не использует информацию об их взаимном расположении внутри документа.

Вероятностная модель PLSA имеет следующий вид:

[math] \begin{align} F \approx \Phi \times \Theta \end{align} [/math]

Здесь [math]F[/math] - это матрица исходных данных размера [math]|W| \times |D|[/math], где [math]D[/math] - это множество документов, а [math]W[/math] - словарь коллекции, т.е. множество всех уникальных слов, встретившихся в документах.

[math]\Phi[/math] - это матрица параметров модели размера [math]|W| \times |T|[/math], где [math]T[/math] - это множество тем, которые мы хотим извлечь из коллекции. Под темой в бытовом смысле смысле понимается набор слов, характеризующих её. Формально говоря, тема - это вероятностное распределение на множестве слов [math]W[/math], поэтому матрица [math]\Phi[/math] является стохастической, т.е. столбцы её неотрицательны и суммируются в единицу.

[math]\Theta[/math] - матрица результатов кластеризации обучающей коллекции по полученным темам размера [math]|T| \times |D|[/math], в ней столбцы также являются вероятностными распределениями, на этот раз документов на множестве тем.

Фактически, PLSA есть ни что иное, как задача приближённого стохастического матричного разложения, в ходе которой производится мягкая бикластеризация данных (мягкая - потому что объекты распределяются по классам не строго, а с некоторой вероятностью, би - потому что производится одновременная кластрезация слов по темам, и тем - по документам). Поставленную задачу можно решать методом максимального правдоподобия, с помощью ЕМ-алгоритма.

В данной статье будут расматриваться только плотные матрицы (хотя при определённых условиях можно эффективно использовать разреженные).

1.2.2 Математическое описание ЕМ-алгоритма

Задача максимизации логарифма правдоподобия для описанной модели имеет следующий вид:

[math] \begin{align} \mathcal{L}(\Phi, \Theta) = \sum_{d \in D}\sum_{w \in d} n_{dw} \,\mathrm{ln}(\sum_{t \in T} \phi_{wt} \theta_{td}) \rightarrow \underset{\Phi, \Theta}{\mathrm{max}} \end{align} [/math]
[math] \begin{align} \sum_{w \in W} \phi_{wt} = 1, \, \forall t \in T, \quad \phi_{wt} \ge 0; \end{align} [/math]
[math] \begin{align} \sum_{t \in T} \theta_{td} = 1, \, \forall d \in D, \quad \theta_{td} \ge 0. \end{align} [/math]

Прямая оптимизация логарифма правдоподобия - очень сложная задача, поэтому её решают приближённо с помощью метода простых итераций, в котором чередуются два шага: E (expectation) и M (maximization). Перед первой итерацией выбираются начальные приближения параметров [math]\Phi[/math] и [math]\Theta[/math].

На Е-шаге по текущим значениям параметров с помощью формулы Байеса вычисляются вспомогательные переменные - условные вероятности [math]p(t\, | \,d, \,w)[/math] для всех тем [math]t \in T[/math], для каждого термина [math]w \in d[/math] для каждого документа [math]d \in D[/math]:

[math] \begin{align} p(t\, | \,d, \,w ) = \cfrac{\phi_{wt}\theta_{td}}{\sum_{s \in T}\phi_{ws}\theta_{sd}} \end{align} [/math]

На М-шаге, наоброт, по условным вероятностям [math]p(t\, | \,d, \,w)[/math] вычисляется новое приближение параметров [math]\phi_{wt}[/math], [math]\theta_{td}[/math]:

[math] \begin{align} \phi_{wt} = \cfrac{\hat n_{wt}}{\hat n_t}, \quad \hat n_t = \sum_{w \in W} \hat n_{wt}, \quad \hat n_{wt} = \sum_{d \in D} n_{dw} p(t\, | \,d, \,w ) \end{align} [/math]
[math] \begin{align} \theta_{td} = \cfrac{\hat n_{dt}}{\hat n_d}, \quad \hat n_d = \sum_{t \in T} \hat n_{dt}, \quad \hat n_{dt} = \sum_{w \in d} n_{dw} p(t\, | \,d, \,w ) \end{align} [/math]

Строгое обоснование данных формул можно получить с помощью теоремы Куна-Таккера.

1.2.3 Общие слова о модернизациях

Как уже было сказано, и как видно из описания выше, данный алгоритм сложно применять на практике в чистом виде из-за необходимости хранения трёхмерной матрицы [math]p(t\, | \,d, \,w)[/math] и двумерной матрицы [math]\Theta[/math], размеры которых зависят от количества обрабатываемых и данных, которых может быть очень много.

Для борьбы с описанной проблемой можно производить вычисления более рационально, отказавшись от хранения обеих матриц и вычисляя необходимы значения на лету. При наличии обученной модели [math]\Phi[/math] получить векторы распределений [math]\theta_d[/math] (если в этом есть необходимость) можно, произведя одну итерацию алгоритма, в ходе которой сама модель обновляться не будет.

В этом варианте адгоритма вычисление [math]\theta_d[/math] будет перенесено с М-шага на Е-шаг, и для каждого нового документа этот вектор будет инициализироваться равномерным распределением. Для ускорения скорости сходимости можно производить итерации "пересчёт [math]p(t\, | \,d, \,w)[/math]"-"обновление [math]\theta_d[/math]" многократно в течении обработки одного документа.

В дальнейшем подобные итерации будем называть внутренними, полный же однократный проход по всей коллекции будем называть итерацией внешней'.'

1.3 Вычислительное ядро алгоритма

Наиболее вычислительно затратной операцией в данном алгоритме является Е-шаг, в ходе которого рассчитываются вспомогательные переменные и векторы [math]\theta_d[/math]. С введением внутренних итераций нагрузка на Е-шаг только увеличивается.

1.4 Макроуструктура алгоритма

В целом, высокоуровневое описание ЕМ-алгоритма состоит из самих Е-шага и М-шага. Е-шаг представляет собой набор операций, производимых в цикле по документам, что явно предоставляет возможность его распараллеливания. М-шаг занимает во много раз меньше времени и достаточно эффективно может выполняться в однопоточном режиме.

Впрочем, при наличии действительно больших данных можно задуматься и о параллелизме на М-шаге, но в данной статье этот вопрос не рассматривается.


2 Литература