Участник:Sergey Lavrushkin/EM-алгоритм кластеризации

Материал из Алговики
Перейти к навигации Перейти к поиску

Автор статьи: Сергей Лаврушкин (группа 620)

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

EM–алгоритм — алгоритм кластеризации, заключающийся в максимизации правдоподобия. Его название происходит от слов "expectation-maximization", что переводится как "ожидание-максимизация". Это связано с тем, что каждая итерация содержит два шага — вычисление математических ожиданий (expectation) и максимизацию (maximisation). Алгоритм основан на методике итеративного вычисления оценок максимального правдоподобия, предложенной в 1977 г. (A. P. Demster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm).

В основе идеи EM-алгоритма лежит предположение, что исследуемое множество данных может быть смоделировано с помощью линейной комбинации многомерных нормальных распределений, а целью является оценка параметров распределения, которые максимизируют логарифмическую функцию правдоподобия, используемую в качестве меры качества модели. Иными словами, предполагается, что данные в каждом кластере подчиняются определенному закону распределения, а именно, нормальному распределению. С учетом этого предположения можно определить параметры - математическое ожидание и дисперсию, которые соответствуют закону распределения элементов в кластере, наилучшим образом "подходящему" к наблюдаемым данным.

Таким образом, предполагается, что любое наблюдение принадлежит ко всем кластерам, но с разной вероятностью. Тогда задача будет заключаться в "подгонке" распределений смеси к данным, а затем в определении вероятностей принадлежности наблюдения к каждому кластеру. Наблюдение должно быть отнесено к тому кластеру, для которого данная вероятность выше.

Алгоритм EM основан на вычислении расстояний. Он может рассматриваться как обобщение кластеризации на основе анализа смеси вероятностных распределений. В процессе работы алгоритма происходит итеративное улучшение решения, а остановка осуществляется в момент, когда достигается требуемый уровень точности модели. Мерой в данном случае является монотонно увеличивающаяся статистическая величина, называемая логарифмическим правдоподобием.

1.2 Преимущества и недостатки алгоритма

Среди преимуществ EM-алгоритма можно выделить следующие:

  • Мощная статистическая основа.
  • Линейное увеличение сложности при росте объема данных.
  • Устойчивость к шумам и пропускам в данных.
  • Возможность построения желаемого числа кластеров.
  • Быстрая сходимость при удачной инициализации.

Однако алгоритм имеет и ряд недостатков. Во-первых, предположение о нормальности всех измерений данных не всегда выполняется. Во-вторых, при неудачной инициализации сходимость алгоритма может оказаться медленной. Кроме этого, алгоритм может остановиться в локальном минимуме и дать квазиоптимальное решение.

1.3 Математическое описание алгоритма

Исходные данные:

  • [math]k[/math] — число кластеров,
  • [math]X =\{x_{1}, x_{2}, ..., x_{n}\}[/math] — множество из [math]n[/math] наблюдений [math]q[/math]-мерного пространства,
  • [math]\epsilon[/math] — допустимое отклонение для логарифмического правдоподобия,
  • [math]m[/math] — максимальное число итераций

Вычисляемые данные:

  • [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math] — параметры смеси гауссовых распределений
  • [math]Y[/math] — матрица с вероятностями членства в кластерах

1.3.1 Постановка задачи разделения смеси гауссовых распределений

Пусть [math]w_1, ..., w_k[/math] — априорные вероятности кластеров, [math]p_1(x), ..., p_k(x)[/math] — плотности распределения кластеров, тогда плотность распределения вектора признаков [math]x[/math] сразу по всем кластерам равна:

[math] \begin{align} p(x) = \sum_{j=1}^{k}w_jp_j(x) \end{align} [/math]

Необходимо на основе выборки оценить параметры модели [math]w_1, ..., w_k, p_1(x), ..., p_k(x)[/math]. Это позволит оценивать вероятность принадлежности к кластеру и, таким образом, решить задачу кластеризации. Такая задача называется задачей разделения смеси распределений:

[math] \begin{align} p(x) = \sum_{j=1}^{k}w_jp_j(x),\quad p_j(x) = \phi(\theta_j; x), \end{align} [/math]

где [math]\theta_j[/math] — параметры распределения [math]p_j(x)[/math]. В случае смести гауссовых распределений предполагается, что все компоненты имеют многомерное нормальное распределение. То есть в случае [math]q[/math]-мерного пространства признаков [math]p_j(x)[/math] имеют следующий вид:

[math] \begin{align} & p_j(x) = \frac{1}{\Big(2\pi\Big)^{\frac{q}{2}}\sqrt{|\Sigma_j|}}\exp{\bigg\{-\frac{\delta^2}{2}\bigg\} },\\ & \delta^2 = \Big( x - \mu_j \Big)^T \Sigma_j^{-1} \Big( x - \mu_j \Big), \end{align} [/math]

где:

  • [math]\Sigma_j[/math] — ковариационная матрица размером </math>q \times q</math>,
  • [math]\mu_j[/math][math]q[/math]-мерный вектор математических ожиданий,
  • [math]\delta^2[/math] — квадратичное расстояние Махаланобиса.

В случае смеси гауссовых распределений получаем, что [math]\theta_j = (\mu_j, \Sigma_j)[/math]. То есть для решения задачи разделения смеси гауссовых распределений необходимо оценить вектор параметров [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math]. Согласно принципу максимизации правдоподобия:

[math] \begin{align} w, \theta = \underset{w, \theta}{\operatorname{argmax}} \sum_{i=1}^{n}\ln{p(x_i)} = \underset{w, \theta}{\operatorname{argmax}} \sum_{i=1}^{n}\ln{\sum_{j=1}^{k}w_jp_j(x_i)} \end{align} [/math]

Таким образом, имеет место задача максимизации суммы логарифмов сумм, решение которой представляет большую трудность. В таком случае полезным оказывается итеративный метод решения — EM-алгоритм.

1.3.2 EM-алгоритм

Оптимальные параметры задачи разделения смеси гауссовых распределений отыскиваются последовательно с помощью итерационного EM-алгоритма. Основная идея – вводится вспомогательный вектор скрытых переменных. Это позволяет свести сложную оптимизационную задачу к последовательности итераций по пересчету коэффициентов (скрытых переменных по текущему приближению вектора параметров - E-шаг) и максимизации правдоподобия (с целью найти следующее приближение вектора - М-шаг).

EM-алгоритм заключается в следующем:

  1. В начале работы алгоритма задаются параметры начального приближения. Наиболее общим способом инициализации является присвоение элементам матрицы математических ожиданий случайных значений [math] \mu_j \leftarrow Random [/math], начальные ковариационные матрицы определяются как единчиные [math]\Sigma_j \leftarrow I[/math], веса кластеров задаются одинаковыми [math]w_i \leftarrow \frac{1}{k}[/math]. Также в качестве начальных параметров можно использовать результат работы алгоритма K-means. (Данная эвристика применяется, так как K-means требуется намного меньше итераций до достижения стабилизации, в то время как каждый шаг EM требует больших вычислительных затрат).
  2. Далее итеративно выполняется следующая пара процедур:
    • E-шаг: используя текущее значение вектора параметров [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math], вычисляем значение вектора скрытых переменных [math]g[/math]:
      [math] \begin{align} g_{ij} = \frac{w_j p_j(x_i)}{\sum_{l=1}^{k}w_lp_l(x_i)} \end{align} [/math]
    • М-шаг: переоценка вектора параметров, используя текущее значение вектора скрытых переменных:
      [math] \begin{align} & n_j = \sum_{i = 1}^{n}g_{ij}, \\ & \mu_j^{new} = \frac{1}{n_j} \sum_{i = 1}^{n}g_{ij}x_i, \\ & \Sigma_j^{new} = \frac{1}{n_j} \sum_{i = 1}^{n}g_{ij}(x_i - \mu_j^{new})(x_i - \mu_j^{new})^T,\\ & w_j^{new} = \frac{n_j}{n}. \end{align} [/math]

Итерации происходят до сходимости или достижения максимального числа итераций.

1.4 Вычислительное ядро алгоритма

1.5 Макроструктура алгоритма

1.6 Схема реализации последовательного алгоритма

1.7 Последовательная сложность алгоритма

1.8 Информационный граф

1.9 Ресурс параллелизма алгоритма

1.10 Входные и выходные данные алгоритма

1.11 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость реализации алгоритма

2.2 Существующие реализации алгоритма

3 Литература