Уровень алгоритма

Участник:Yastrebovks/Алгоритм Ланцоша с полной переортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 32: Строка 32:
 
В качестве входных данных для алгоритма Ланцоша подаются квадратная матрица размерности <math>n</math>X<math>n</math>: <math>A=A^T</math>; а так же вектор начального приближения <math>b</math>.  
 
В качестве входных данных для алгоритма Ланцоша подаются квадратная матрица размерности <math>n</math>X<math>n</math>: <math>A=A^T</math>; а так же вектор начального приближения <math>b</math>.  
  
Метод осуществляет поиск трехдиагональной симметричной матрицы <math>T_k=Q_k^TAQ_k</math>. Причем собственные значения <math>T_k</math> таковы, что приближают собственные значения исходной матрицы <math>A</math>. То есть на каждом <math>k</math>-м шаге из ортонормированных векторов Ланцоша строится матрица <math>Q_k = [q_1,q_2,...,q_k]</math> и в качестве приближенных собственных значений матрицы <math>A</math> принимаются числа Ритца.
+
Метод осуществляет поиск трехдиагональной симметричной матрицы <math>T_k=Q_k^TAQ_k</math>.  
 +
 
 +
Таким образом матрица <math>T_k=\begin{bmatrix}
 +
\alpha_1 & \beta_2 \\
 +
\beta_2 & \alpha_2 & \beta_3 &\\
 +
&. & . & .\\
 +
&&\beta_{k-1} & \alpha_{k-1} & \beta_k\\
 +
&&&\beta_k & \alpha_k
 +
 
 +
\end{bmatrix}</math>
 +
 
 +
Причем собственные значения <math>T_k</math> таковы, что приближают собственные значения исходной матрицы <math>A</math>. То есть на каждом <math>k</math>-м шаге из ортонормированных векторов Ланцоша строится матрица <math>Q_k = [q_1,q_2,...,q_k]</math> и в качестве приближенных собственных значений матрицы <math>A</math> принимаются числа Ритца.
  
 
Из-за ошибок округления вектора <math> A^{k-1}x_1 </math>, формирующие подпространство Крылова, становятся неортогональными. Чтобы решить данную прорблему, проводят переортогонализацию методом Грамма-Шмидта.
 
Из-за ошибок округления вектора <math> A^{k-1}x_1 </math>, формирующие подпространство Крылова, становятся неортогональными. Чтобы решить данную прорблему, проводят переортогонализацию методом Грамма-Шмидта.

Версия 08:18, 5 декабря 2016


Алгоритм Ланцоша с полной переортогонализацией
Последовательный алгоритм
Последовательная сложность [math]O(n^2)+O(nk^2) [/math]
Объём входных данных [math]\frac{n(n + 1)}{2}[/math]
Объём выходных данных [math]k(n + 1)[/math]


Авторы: Алексейчук Н.Н 616, Ястребов К.С. 609. Авторы внесли равнозначный вклад в каждый из разделов данной статьи.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма.

Алгоритм Ланцоша ищет собвственные значения и собственные векторы для симетричной матрицы A вещественных чисел. Является итерацонным алгоритмом. Алгоритм Ланцоша использует степенной метод ([math] b_{k+1} = \frac{Ab_k}{||Ab_k||} [/math]) для поиска наибольших собственных значений и векторов матриц.

В отличие от прямых алгоритмов требует мешьше памяти и мощности, что является несомненным плюсом для больших матриц.

Несмотря на свою скорость работы и экономию памяти, сначала не был популярным алгоритмом из – за недостаточной вычислительной устойчивости. В 1970 году Ojalvo и Newman [1] показали способ сделать алгоритм достаточно устойчивым. В этой же статье алгоритм был применен к расчету инженерной конструкции с большим количеством узлов, которые подвергались динамической нагрузке.


1.2 Математическое описание алгоритма

Памятка: Степенной метод нахождения наибольшего собственного числа матрицы можно сформулировать в предельном виде: если [math] b_0 [/math] – случайный вектор, и [math] b_n+1 = Ab_n [/math], тогда для больших чисел n предел [math]x_n/||x_n|| [/math] стремится к нормированному наибольшему собственному вектору.

Алгоритм Ланцоша комбинирует метод Ланцоша для нахождения крыловского подпространства и метод Релэя – Ритца.

Подпространство Крылова для степенного метода: [math] K_m(v,A) = span[x_1, Ax_1, A^2x_1, ..., A^{k-1}x_1] [/math]

В качестве входных данных для алгоритма Ланцоша подаются квадратная матрица размерности [math]n[/math]X[math]n[/math]: [math]A=A^T[/math]; а так же вектор начального приближения [math]b[/math].

Метод осуществляет поиск трехдиагональной симметричной матрицы [math]T_k=Q_k^TAQ_k[/math].

Таким образом матрица [math]T_k=\begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 &\\ &. & . & .\\ &&\beta_{k-1} & \alpha_{k-1} & \beta_k\\ &&&\beta_k & \alpha_k \end{bmatrix}[/math]

Причем собственные значения [math]T_k[/math] таковы, что приближают собственные значения исходной матрицы [math]A[/math]. То есть на каждом [math]k[/math]-м шаге из ортонормированных векторов Ланцоша строится матрица [math]Q_k = [q_1,q_2,...,q_k][/math] и в качестве приближенных собственных значений матрицы [math]A[/math] принимаются числа Ритца.

Из-за ошибок округления вектора [math] A^{k-1}x_1 [/math], формирующие подпространство Крылова, становятся неортогональными. Чтобы решить данную прорблему, проводят переортогонализацию методом Грамма-Шмидта.

1.3 Вычислительное ядро алгоритма

Вычислительным ядром данного алгоритма являются следующие шаги:

  • 1. [math]Aq=( \sum\nolimits_{i=^n}a_{1i}q_i, \sum\nolimits_{i=2}^na_{2i}q_i, ..., \sum\nolimits_{i=1}^na_{ni}q_i)[/math].
  • 2. [math]z=z-\sum\nolimits_{i=1}^{k}(z^Tq_i)q_i.[/math]

В данном случае первая операция выполняет умножение симметричной матрицы [math]A[/math] размерности [math]n[/math]X[math]n[/math] на [math]n[/math]-мерный вектор [math]q[/math], вследствие чего вычислительная сложность выполнения заключается в [math]n^2[/math] умножений и [math]n^2-n[/math] сложений. Второе действие является процессом ортогонализации Грама-Шмидта. В последнем действии вычисляются [math]k^2n+k(n+2)[/math] умножений и [math]k^2n + k(n + 1) + 2[/math] операций сложения.

1.4 Макроструктура алгоритма

Основные операции:

  • 1. умножение матрицы на вектор [math]b=Ax[/math].
  • 2. ортогонализация методом Грмма-Шмидта.
  • 3. вычисление нового вектора [math]q_{i+1} = z/ \beta[/math].


1.5 Схема реализации последовательного алгоритма

[math] \begin{array}{l} \mathtt{input:}\; A, b, k\\ q_1 = b / \Vert b \Vert_2\\ Q = q_1\\ \mathtt{for}\; j = \overline{1, k}:\\ \quad z = A q_j \\ \quad \alpha_j = q_j^T z \\ \quad z = z - Q \left( Q^T z \right) \\ \quad z = z - Q \left( Q^T z \right)\\ \quad \beta_j = \Vert z \Vert_2\\ \quad \mathtt{if }\; \beta_j = 0\\ \quad \quad \mathtt{exit}\\ \quad \mathtt{end \; if}\\ \quad q_{j+1} = z/\beta_j\\ \quad Q = [Q, q_{j + 1}]\\ \mathtt{end \; for}\\ \mathtt{output:}\; [\alpha_1, \dots, \alpha_k], [\beta_1, \dots, \beta_{k - 1}], [q_1, \dots, q_k]. \end{array} [/math]

Кроме того, заметим, что очень часто в макрооперациях возникает операция вычисления суммы всех элементов массива. Её необходимо выполнять и при умножении матрицы на вектор, и при вычислении скалярного произведения, и при вычислении нормы вектора. Разные методы суммирования дают разный ресурс параллелизма. В этой работе предполагается, что везде для суммирования используется последовательный способ.

1.6 Последовательная сложность алгоритма

Количество операций складывается из количества операций для классического метода Ланцоша[2] и количества операций для переортогонализации методом грамма-Шмидта[3].

Итоговая сложность составляет [math]O(n^2)+O(nk^2) [/math].

1.7 Информационный граф

LanzochGraph.png

Троеточием в данном алгоритме обозначаются операции, выполняющиеся для всех элементов от [math]i=1..n[/math].

1.8 Ресурс параллелизма алгоритма

Хотя алгоритм является итерационным, возможно распараллелить внутри каждой итерации умножение матрицы на вектор и процесс переортогонализации Грамма-Шмидта.

Процесс умножения матриц matvec можно распараллелить несколькими способами[4].

Как видно из графа, для выполнения j-й операции, необходимо выполнить следующие ярусы:

  1. [math]n[/math] ярусов сложений с [math]n[/math] операциями умножения в каждом (вычисление [math]z[/math]);
  2. [math]n[/math] ярусов сложений с [math]1[/math] операцией умножения в каждом (вычисление [math]\alpha_j[/math]);
  3. [math]j[/math] ярусов сложений с [math]n[/math] операциями умножения в каждом, [math]n[/math] ярусов сложений с [math]j[/math] операциями умножения в каждом, [math]1[/math] ярус вычитаний размера [math]n[/math] (первая переортогонализация);
  4. [math]j[/math] ярусов сложений с [math]n[/math] операциями умножения в каждом, [math]n[/math] ярусов сложений с [math]j[/math] операциями умножения в каждом, [math]1[/math] ярус вычитаний размера [math]n[/math] (вторая переортогонализация);
  5. [math]n[/math] ярусов сложений с [math]1[/math] операцией умножения в каждом (вычисление [math]\beta_j[/math]);
  6. [math]1[/math] ярус делений размера [math]n[/math] (вычисление [math]q_{j + 1}[/math]).

Если учесть весь ресурс параллелизма можно получить сложность [math]O(k)[/math].


1.9 Входные и выходные данные алгоритма

На вход принимается сама матрица [math] A \in R^{n \times n}[/math], случайный вектор [math]b[/math] (впрочем возможен вариант, при котором этот вектор генерируется случайным образом). Ввиду симметричности входной матрицы достаточно передать лишь ее верхнюю треугольную матрицу, что дает объем входных данных [math]\frac{n(n + 1)}{2}[/math].


Выходными данными для [math]j[/math]ой итерации являются вектор [math] Aq_j [/math] и собственное число [math] \lambda [/math]. Общий объем выходных данных [math]k(n+1)[/math].

1.10 Свойства алгоритма

Если [math]A[/math] эрмитова матрица, то алгоритм Ланцоша и Bi-Lanczos сходятся к одинаковым трехдиагональным матрицам ритца[5].

При реализации классического алгоритма Ланцоша возникает большая погрешность при округлении. Вариант с полной переортогонализацией позволяет избегать больших погрешностей, однако является более ресурсоемким. Существует промежуточный вариант с частичной переортогонализацией.

Алгоритм может завершить свою работу досрочно, когда найденные собственные значения будут достаточно близки к целевым.


1.11 Библиотеки реализующие алгоритм

The IETL Project http://www.comp-phys.org/software/ietl/ C++

NAG Library http://www.nag.com/content/nag-library C, C++, Fortran, C#, MATLAB, R

ARPACK https://people.sc.fsu.edu/~jburkardt/m_src/arpack/arpack.html MATLAB

GrapLab https://turi.com/products/create/open_source.html C++

С частичной переортаганализацией

LANSO/PLANSO http://web.cs.ucdavis.edu/~bai/ET/lanczos_methods/overview_PLANSO.html Fortran (уже распараллелена)

2 Литература

Ojalvo, I.U. and Newman, M., "Vibration modes of large structures by an automatic matrix-reduction method", AIAA J., 8 (7), 1234–1239 (1970).