Уровень алгоритма

Участница:Александра/Метод встречи посередине: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 91: Строка 91:
 
=== Ресурс параллелизма алгоритма ===
 
=== Ресурс параллелизма алгоритма ===
  
Как видно из информационного графа, для реализации атаки "встреча посередине" в параллельном варианте потребуются следующие шаги (в предположении, что <math>|K_1|=|K_2|</math>):
+
Как видно из информационного графа, для реализации атаки "встреча посередине" в параллельном варианте потребуются выполнение следующих двух ярусов (в предположении, что <math>|K_1|=|K_2|</math>):
  
1. <math>O(\sqrt n)</math> зашифрований и столько же расшифрований
+
1. <math>\sqrt n</math> зашифрований и столько же расшифрований
  
 
2. <math>n</math> сравнений
 
2. <math>n</math> сравнений
 +
 +
Таким образом, высота ЯПФ составляет 2, ширина - <math>n</math>.
  
 
== Литература ==
 
== Литература ==
  
 
<references \>
 
<references \>

Версия 13:54, 15 октября 2016


Метод встречи посередине
Последовательный алгоритм
Последовательная сложность [math]O(\sqrt n\log(n))[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O()[/math]
Ширина ярусно-параллельной формы [math]O()[/math]


Автор описания: А.В.Батарина

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод "Встреча посередине" криптоанализа блочных шифров был впервые предложен в 1977 году Уитфилдом Диффи и Мартином Хеллманом [1]. Встреча посередине используется для ускорения перебора ключей шифра за счёт увеличения требуемой памяти. Метод применим в случае каскадного построения сложного шифра из нескольких простых, другими словами, в случае последовательного применения шифрующих преобразований на разных ключах к блокам открытого текста.

1.1.1 Блочный шифр с ключевым расписанием

1.1.2 Усложнённые шифры

В качестве примера шифра, поддающегося атаке "встреча посередине" можно привести криптоалгоритм 2DES, являющийся модификацией шифра DES. В 2DES открытый текст шифруется дважды алгоритмом DES на двух разных 56-битных ключах. Однако из-за атаки "встреча посередине" сложность перебора двойного ключа (112 бит) шифра 2DES составляет [math]2^{57}[/math] вместо ожидаемых [math]2^{112}[/math].

1.2 Математическое описание алгоритма

Исходные данные: открытый текст [math]x[/math], шифртекст [math]y[/math].

Алгоритм зашифрования — композиция двух преобразований [math]T_1(x,k_1)[/math] и [math]T_2(x,k_2)[/math], т.е. [math]y=T_2(T_1(x,k_1),k_2)[/math].

Алгоритм расшифрования — [math]x=T_1^{-1}(T_2^{-1}(x,k_2),k_1)[/math]

Вычисляемые данные: ключи шифрования [math]k_1 \in K_1[/math], [math]k_2 \in K_2[/math], где [math]K_1, K_2[/math] — множества возможных ключей.

Трудоёмкость полного перебора всех возможных пар [math]k_1,k_2[/math] составляет в среднем [math]\frac{|K_1||K_2|}{2}[/math]. Однако используя дополнительную память, можно сократить перебор.

Предположим, что открытый текст [math]x[/math] и шифртекст [math]y[/math] однозначно определяют ключи [math]k_1,k_2[/math]. Составим две таблицы:

[math] \begin{align} z_1 & =T_1(x,k_1^1) & z_1^' &=T_2^{-1}(x,k_2^1)\\\\ z_2 & =T_1(x,k_1^2) & z_2^' & =T_2^{-1}(x,k_2^2)\\ ... & ................. & ... & .................... \\ z_{|K_1|} & =T_1(x,k_1^{|K_1|}) & z_{|K_1|}^' & =T_2^{-1}(x,k_2^{|K_1|}) \end{align} [/math]

Для всех [math]k_1 \in K_1[/math], [math]k_2 \in K_2[/math]. Далее таблицы объединяются и сортируются по значениям [math]z_i,z_j^'[/math]. Индексы [math]i,j[/math], при которых [math]z_i=z_j^'[/math], однозначно определяют искомую пару ключей [math]k_1=k_1^i,k_2=k_2^j[/math]. Для нахождения такой пары достаточно просмотреть отсортированную таблицу один раз.

1.2.1 Оптимизации

1. От генерации второй таблицы со значениями [math]z_j^'[/math] можно отказаться, перебирая ключи [math]k_2^j[/math] до того момента, когда значение [math]z_j^'[/math] совпадёт с одним из значений [math]z_i[/math]. В таком случае опробование ключей [math]k_2^j[/math] в среднем сократится вдвое. Также вдвое сократится объём используемой памяти. Для нахождения совпадающего значения в отсортированном массиве можно применить бинарный поиск.

2. Вместо сортировки таблицы со значениями [math]z_i[/math] и последующего бинарного поиска можно использовать хэш-таблицу.

1.3 Макроструктура алгоритма

Основную сложность алгоритма составляет сортировка таблицы, полученной в результате опробования ключей. В случае использования хэш-таблицы достаточно большого размера вместо сортировки основную сложность составит опробование ключей [math]k_1,k_2[/math].

1.4 Схема реализации последовательного алгоритма

Далее приводится последовательность действий для варианта алгоритма с генерацией одной таблицы значений [math]z_i[/math].

1. Вычислить таблицу [math]z_i[/math], записывая значения в порядке вычисления или используя хэш-таблицу

2. В случае записи значений в порядке вычисления отсортировать массив

3. Опробовать ключи [math]k_2^j[/math], ища совпадения с таблицей значений [math]z_i[/math]. Для нахождения совпадения использовать поиск по хэш-таблице (если она есть) или бинарный поиск

1.5 Последовательная сложность алгоритма

1. Сложность вычисления таблиц значений [math]z_i,z_j^'[/math] составит [math]O(|K_1|+|K_2|)[/math] операций опробования

2. Объединение таблиц и их сортировка будет иметь сложность [math]O((|K_1|+|K_2|)\log(|K_1|+|K_2|))[/math] (например, при сортировке слиянием).

3. Сложность бинарного поиска в отсортированном массиве — [math]O(log_2(|K_1|))[/math] для каждого поиска

4. Сложность поиска в достаточно большой хэш-таблице составит [math]O(1)[/math] для каждого поиска

Итого асимптотическая сложность алгоритма:

1. С генерацией двух таблиц — [math]O(|K_1|+|K_2|) + O((|K_1|+|K_2|)\log(|K_1|+|K_2|)) + O(|K_1|+|K_2|)=O((|K_1|+|K_2|)\log(|K_1|+|K_2|))[/math]

2. C генерацией одной таблицы, сортировкой и бинарным поиском — [math]O(|K_1|) + O((|K_1|)\log(|K_1|)) + O(|K_2|\log_2(|K_1|))=O(max(|K_1|,|K_2|)\log(|K_1|))[/math]

3. C генерацией одной (достаточно большой) хэш-таблицы — [math]O(|K_1|) + O(|K_2|)=O(|K_1|+|K_2|)[/math]

Пусть n - количество всевозможных пар [math]k_1,k_2[/math] и пусть [math]|K_1|=|K_2|[/math]. В этом случае [math]|K_1|=|K_2|=\sqrt n[/math].

Тогда сложность алгоритма в первых двух пунктах составляет [math]O(\sqrt n\log(n))[/math], в третьем — [math]O(\sqrt n)[/math].

1.6 Информационный граф

Опишем граф алгоритма. На вход подаётся открытый (Open) и закрытый (Close), т.е. зашифрованный, текст. Далее открытый текст шифруется (Enc) на ключах [math]k_1^i[/math], а зашифрованный расшифруется (Dec) на ключе [math]k_2^j[/math]. Далее полученные криптограммы сравниваются (Cmp) и все ключи, на которых они совпали, являются выходом алгоритма.

Рисунок 1. Граф алгоритма c отображением входных и выходных данных. Open - открытый текст Close — шифртекст Enc — операция зашифрования Dec — операция расшифрования, Cmp — операция сравнения, Keys — полученные ключи

1.7 Ресурс параллелизма алгоритма

Как видно из информационного графа, для реализации атаки "встреча посередине" в параллельном варианте потребуются выполнение следующих двух ярусов (в предположении, что [math]|K_1|=|K_2|[/math]):

1. [math]\sqrt n[/math] зашифрований и столько же расшифрований

2. [math]n[/math] сравнений

Таким образом, высота ЯПФ составляет 2, ширина - [math]n[/math].

2 Литература

<references \>

  1. (June 1977) «Exhaustive Cryptanalysis of the NBS Data Encryption Standard». Computer 10 (6): 74–84. DOI:10.1109/C-M.1977.217750