Difference between revisions of "Template:Main page/Featured"

From Algowiki
Jump to navigation Jump to search
[quality revision][pending revision]
(Fill in the content of the main page.)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<div style="font-size: 160%; font-weight: bold;">
+
<div style="font-size: 160%; font-weight: bold; text-align: center;">
 
Cholesky decomposition‎
 
Cholesky decomposition‎
 
</div>
 
</div>
  
{| style="float:{{{float|right}}}; clear:right;margin-left: 1em; width:{{{width|40%}}};" cellpadding=8 cellspacing=1 border=0
+
{| style="float:{{{float|right}}}; clear:right;margin-left: 1em; width:{{{width|30%}}};" cellpadding=8 cellspacing=1 border=0
 
|-
 
|-
 
|align=left width=100% style="background-color:#f3f3ff; border:1px solid"|  
 
|align=left width=100% style="background-color:#f3f3ff; border:1px solid"|  
Line 43: Line 43:
  
 
In a number of implementations, the division by the diagonal element <math>l_{ii}</math> is made in the following two steps: the computation of <math>\frac{1}{l_{ii}}</math> and, then, the multiplication of the result by the modified values of <math>a_{ji}</math> . Here we do not consider this computational scheme, since this scheme has worse parallel characteristics than that given above.
 
In a number of implementations, the division by the diagonal element <math>l_{ii}</math> is made in the following two steps: the computation of <math>\frac{1}{l_{ii}}</math> and, then, the multiplication of the result by the modified values of <math>a_{ji}</math> . Here we do not consider this computational scheme, since this scheme has worse parallel characteristics than that given above.
 
=== Sequential complexity of the algorithm ===
 
 
The following number of operations should be performed to decompose a matrix of order <math>n</math> using a sequential version of the Cholesky algorithm:
 
 
* <math>n</math> square roots,
 
* <math>\frac{n(n-1)}{2}</math> divisiona,
 
* <math>\frac{n^3-n}{6}</math> multiplications and <math>\frac{n^3-n}{6}</math> additions (subtractions): the main amount of computational work.
 
 
In the accumulation mode, the multiplication and subtraction operations should be made in double precision (or by using the corresponding function, like the DPROD function in Fortran), which increases the overall computation time of the Cholesky algorithm.
 
 
Thus, a sequential version of the Cholesky algorithm is of cubic complexity.
 
  
 
:''[[Cholesky decomposition|Read more…]]''
 
:''[[Cholesky decomposition|Read more…]]''

Latest revision as of 15:24, 15 April 2015

Cholesky decomposition‎

Properties of the algorithm:

  • Sequential complexity: [math]O(n^3)[/math]
  • Height of the parallel form: [math]O(n)[/math]
  • Width of the parallel form: [math]O(n^2)[/math]
  • Amount of input data: [math]\frac{n (n + 1)}{2}[/math]
  • Amount of output data: [math]\frac{n (n + 1)}{2}[/math]

1 Properties and structure of the algorithm

1.1 General description

The Cholesky decomposition algorithm was first proposed by Andre-Louis Cholesky (October 15, 1875 - August 31, 1918) at the end of the First World War shortly before he was killed in battle. He was a French military officer and mathematician. The idea of this algorithm was published in 1924 by his fellow officer and, later, was used by Banachiewicz in 1938 [7]. In the Russian mathematical literature, the Cholesky decomposition is also known as the square-root method [1-3] due to the square root operations used in this decomposition and not used in Gaussian elimination.

Originally, the Cholesky decomposition was used only for dense real symmetric positive definite matrices. At present, the application of this decomposition is much wider. For example, it can also be employed for the case of Hermitian matrices. In order to increase the computing performance, its block versions are often applied.

In the case of sparse matrices, the Cholesky decomposition is also widely used as the main stage of a direct method for solving linear systems. In order to reduce the memory requirements and the profile of the matrix, special reordering strategies are applied to minimize the number of arithmetic operations. A number of reordering strategies are used to identify the independent matrix blocks for parallel computing systems.

1.2 Mathematical description

Input data: a symmetric positive definite matrix [math]A[/math] whose elements are denoted by [math]a_{ij}[/math]).

Output data: the lower triangular matrix [math]L[/math] whose elements are denoted by [math]l_{ij}[/math]).

The Cholesky algorithm can be represented in the form

[math] \begin{align} l_{11} & = \sqrt{a_{11}}, \\ l_{j1} & = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n], \\ l_{ii} & = \sqrt{a_{ii} - \sum_{p = 1}^{i - 1} l_{ip}^2}, \quad i \in [2, n], \\ l_{ji} & = \left (a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp} \right ) / l_{ii}, \quad i \in [2, n - 1], j \in [i + 1, n]. \end{align} [/math]

There exist block versions of this algorithm; however, here we consider only its “dot” version.

In a number of implementations, the division by the diagonal element [math]l_{ii}[/math] is made in the following two steps: the computation of [math]\frac{1}{l_{ii}}[/math] and, then, the multiplication of the result by the modified values of [math]a_{ji}[/math] . Here we do not consider this computational scheme, since this scheme has worse parallel characteristics than that given above.

Read more…