Difference between revisions of "Poisson equation, solving with DFT"

From Algowiki
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
(Created page with " Primary authors of this description:V.M.stepanenko, E.V.Mortikov, Участн...")
 
Line 3: Line 3:
 
Primary authors of this description:[[Участник:Виктор Степаненко|V.M.stepanenko]], [[Участник:Evgeny Mortikov|E.V.Mortikov]], [[Участник:VadimVV|Vad.V.Voevodin]] ([[#Описание локальности данных и вычислений|section 2.2]])
 
Primary authors of this description:[[Участник:Виктор Степаненко|V.M.stepanenko]], [[Участник:Evgeny Mortikov|E.V.Mortikov]], [[Участник:VadimVV|Vad.V.Voevodin]] ([[#Описание локальности данных и вычислений|section 2.2]])
  
== Свойства и структура алгоритма ==
+
== Properties and structure of the algorithm ==
  
=== Общее описание алгоритма ===
+
=== General description of the algorithm ===  
Уравнение Пуассона для многомерного пространства имеет вид:
+
 
 +
The Poisson equation for the multidimensional space has the form
 +
<math>
 +
\sum_{i=1}^{N}\frac{\partial^2 \phi}{\partial x_i^2}=f,~\mathbf{x}\in D.
 +
</math>
 +
 
 +
Here, <math>D \in \mathbb{R}^N</math> is the domain in which the solution <math>\phi(\mathbf{x})</math> is defined, and <math>\mathbf{x}=(x_1,...,x_N)^T</math> is the vector of independent variables. The Poisson equation is supplemented by the boundary conditions
 +
<math>
 +
B(\phi)=F, \mathbf{x} \in \Gamma(D),
 +
</math>

Revision as of 23:13, 3 February 2016


Primary authors of this description:V.M.stepanenko, E.V.Mortikov, Vad.V.Voevodin (section 2.2)

1 Properties and structure of the algorithm

1.1 General description of the algorithm

The Poisson equation for the multidimensional space has the form [math] \sum_{i=1}^{N}\frac{\partial^2 \phi}{\partial x_i^2}=f,~\mathbf{x}\in D. [/math]

Here, [math]D \in \mathbb{R}^N[/math] is the domain in which the solution [math]\phi(\mathbf{x})[/math] is defined, and [math]\mathbf{x}=(x_1,...,x_N)^T[/math] is the vector of independent variables. The Poisson equation is supplemented by the boundary conditions [math] B(\phi)=F, \mathbf{x} \in \Gamma(D), [/math]