Difference between revisions of "Poisson equation, solving with DFT"

From Algowiki
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
Line 16: Line 16:
 
B(\phi)=F, \mathbf{x} \in \Gamma(D),
 
B(\phi)=F, \mathbf{x} \in \Gamma(D),
 
</math>
 
</math>
 +
where <math>\Gamma(D)</math> is the boundary of <math>D</math> and <math>B(\phi)</math> is the operator defining the boundary conditions. The case <math>B(\phi)=\phi</math> corresponds to the Dirichlet boundary condition, while <math>B(\phi)=\partial\phi/\partial n</math>, where <math>\mathbf{n}</math> is the outer normal to the boundary <math>\Gamma(D)</math>, corresponds to the Neumann boundary condition. Sometimes mixed boundary conditions <math>B(\phi)=C\phi+\partial\phi/\partial n</math>, where <math>C</math> is a constant, are also used. The so-called "periodic boundary conditions" may also occur. In this case, the problem is posed on an unbounded domain, but the solution is assumed to be periodic with respect to a subset of variables from <math>\mathbf{x}</math>.
 +
 +
Уравнение Пуассона возникает во многих задачах математической физики, например, в электростатике (в этом случае <math>\phi</math> - потенциал электрической силы) и гидродинамике (<math>\phi</math> - давление жидкости или газа); при этом <math>N=2,3</math> для плоской и трехмерной задач, соответственно.

Revision as of 23:50, 3 February 2016


Primary authors of this description:V.M.stepanenko, E.V.Mortikov, Vad.V.Voevodin (section 2.2)

1 Properties and structure of the algorithm

1.1 General description of the algorithm

The Poisson equation for the multidimensional space has the form \sum_{i=1}^{N}\frac{\partial^2 \phi}{\partial x_i^2}=f,~\mathbf{x}\in D.

Here, D \in \mathbb{R}^N is the domain in which the solution \phi(\mathbf{x}) is defined, and \mathbf{x}=(x_1,...,x_N)^T is the vector of independent variables. The Poisson equation is supplemented by the boundary conditions B(\phi)=F, \mathbf{x} \in \Gamma(D), where \Gamma(D) is the boundary of D and B(\phi) is the operator defining the boundary conditions. The case B(\phi)=\phi corresponds to the Dirichlet boundary condition, while B(\phi)=\partial\phi/\partial n, where \mathbf{n} is the outer normal to the boundary \Gamma(D), corresponds to the Neumann boundary condition. Sometimes mixed boundary conditions B(\phi)=C\phi+\partial\phi/\partial n, where C is a constant, are also used. The so-called "periodic boundary conditions" may also occur. In this case, the problem is posed on an unbounded domain, but the solution is assumed to be periodic with respect to a subset of variables from \mathbf{x}.

Уравнение Пуассона возникает во многих задачах математической физики, например, в электростатике (в этом случае \phi - потенциал электрической силы) и гидродинамике (\phi - давление жидкости или газа); при этом N=2,3 для плоской и трехмерной задач, соответственно.