Difference between revisions of "Poisson equation, solving with DFT"
[unchecked revision] | [unchecked revision] |
Line 16: | Line 16: | ||
B(\phi)=F, \mathbf{x} \in \Gamma(D), | B(\phi)=F, \mathbf{x} \in \Gamma(D), | ||
</math> | </math> | ||
+ | where <math>\Gamma(D)</math> is the boundary of <math>D</math> and <math>B(\phi)</math> is the operator defining the boundary conditions. The case <math>B(\phi)=\phi</math> corresponds to the Dirichlet boundary condition, while <math>B(\phi)=\partial\phi/\partial n</math>, where <math>\mathbf{n}</math> is the outer normal to the boundary <math>\Gamma(D)</math>, corresponds to the Neumann boundary condition. Sometimes mixed boundary conditions <math>B(\phi)=C\phi+\partial\phi/\partial n</math>, where <math>C</math> is a constant, are also used. The so-called "periodic boundary conditions" may also occur. In this case, the problem is posed on an unbounded domain, but the solution is assumed to be periodic with respect to a subset of variables from <math>\mathbf{x}</math>. | ||
+ | |||
+ | Уравнение Пуассона возникает во многих задачах математической физики, например, в электростатике (в этом случае <math>\phi</math> - потенциал электрической силы) и гидродинамике (<math>\phi</math> - давление жидкости или газа); при этом <math>N=2,3</math> для плоской и трехмерной задач, соответственно. |
Revision as of 23:50, 3 February 2016
Primary authors of this description:V.M.stepanenko, E.V.Mortikov, Vad.V.Voevodin (section 2.2)
1 Properties and structure of the algorithm
1.1 General description of the algorithm
The Poisson equation for the multidimensional space has the form [math] \sum_{i=1}^{N}\frac{\partial^2 \phi}{\partial x_i^2}=f,~\mathbf{x}\in D. [/math]
Here, [math]D \in \mathbb{R}^N[/math] is the domain in which the solution [math]\phi(\mathbf{x})[/math] is defined, and [math]\mathbf{x}=(x_1,...,x_N)^T[/math] is the vector of independent variables. The Poisson equation is supplemented by the boundary conditions [math] B(\phi)=F, \mathbf{x} \in \Gamma(D), [/math] where [math]\Gamma(D)[/math] is the boundary of [math]D[/math] and [math]B(\phi)[/math] is the operator defining the boundary conditions. The case [math]B(\phi)=\phi[/math] corresponds to the Dirichlet boundary condition, while [math]B(\phi)=\partial\phi/\partial n[/math], where [math]\mathbf{n}[/math] is the outer normal to the boundary [math]\Gamma(D)[/math], corresponds to the Neumann boundary condition. Sometimes mixed boundary conditions [math]B(\phi)=C\phi+\partial\phi/\partial n[/math], where [math]C[/math] is a constant, are also used. The so-called "periodic boundary conditions" may also occur. In this case, the problem is posed on an unbounded domain, but the solution is assumed to be periodic with respect to a subset of variables from [math]\mathbf{x}[/math].
Уравнение Пуассона возникает во многих задачах математической физики, например, в электростатике (в этом случае [math]\phi[/math] - потенциал электрической силы) и гидродинамике ([math]\phi[/math] - давление жидкости или газа); при этом [math]N=2,3[/math] для плоской и трехмерной задач, соответственно.