Poisson equation, solving with DFT
Primary authors of this description:V.M.stepanenko, E.V.Mortikov, Vad.V.Voevodin (section 2.2)
1 Properties and structure of the algorithm
1.1 General description of the algorithm
The Poisson equation for the multidimensional space has the form \sum_{i=1}^{N}\frac{\partial^2 \phi}{\partial x_i^2}=f,~\mathbf{x}\in D.
Here, D \in \mathbb{R}^N is the domain in which the solution \phi(\mathbf{x}) is defined, and \mathbf{x}=(x_1,...,x_N)^T is the vector of independent variables. The Poisson equation is supplemented by the boundary conditions B(\phi)=F, \mathbf{x} \in \Gamma(D), where \Gamma(D) is the boundary of D and B(\phi) is the operator defining the boundary conditions. The case B(\phi)=\phi corresponds to the Dirichlet boundary condition, while B(\phi)=\partial\phi/\partial n, where \mathbf{n} is the outer normal to the boundary \Gamma(D), corresponds to the Neumann boundary condition. Sometimes mixed boundary conditions B(\phi)=C\phi+\partial\phi/\partial n, where C is a constant, are also used. The so-called "periodic boundary conditions" may also occur. In this case, the problem is posed on an unbounded domain, but the solution is assumed to be periodic with respect to a subset of variables from \mathbf{x}.
Уравнение Пуассона возникает во многих задачах математической физики, например, в электростатике (в этом случае \phi - потенциал электрической силы) и гидродинамике (\phi - давление жидкости или газа); при этом N=2,3 для плоской и трехмерной задач, соответственно.