Householder (reflections) method for reducing of a matrix to Hessenberg form
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде [math]A=QRQ^T[/math] ([math]Q[/math] - ортогональная, [math]R[/math] — правая почти треугольная матрица)[1]. При этом матрица [math]Q[/math] хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2]. Каждая из матриц отражения может быть определена одним вектором. Это позволяет в классическом исполнении метода отражений хранить результаты разложения на месте матрицы A с использованием одномерного дополнительного массива.
Для выполнения разложения матрицы в произведение хессенберговой и двух ортогональных используются попеременные умножения слева и справа её текущих модификаций на матрицы Хаусхолдера (отражений).
A reflection (or a Householder) matrix is a matrix of the form [math]U=E-2ww^*[/math], where the vector [math]w[/math] is normalized: [math]w^{*}w=1[/math]. Such a matrix is unitary ([math]U^{*}U=E[/math]) and Hermitian ([math]U^{*}=U[/math]) at the same time; consequently, this matrix is its own inverse ([math]U^{-1}=U[/math]).
Кроме классического метода, есть и другие варианты метода Хаусхолдера, отличающиеся либо наличием блочных операций, либо другими нюансами.