Участник:Inna Park/Сортировка Шелла
Содержание
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Стандартная версия алгоритма Шелла [1] фактически представляет из себя модификацию алгоритма сортировки вставками: если в алгоритме сортировки вставками сравнивались элементы с шагом 1, то в алгоритме Шелла предлагается сравнивать элементы, стоящие на некотором расстоянии [math] d \gt 1 [/math], причем с увеличением номера итерации происходит уменьшение параметра. Это приводит к приросту эффективности в некоторых случаях в сравнении с сортировкой вставками.
Параллельный аналог метода [2]:
1) [math]N[/math] итераций взаимодействия соседних процессоров (соседних в смысле расположения номеров процессоров в N-мерном кубе, где [math] p = 2^N [/math], [math]p[/math] — количество процессоров);
2) Реализация итерация параллельного алгоритма чет-нечетной перестановки. Данный шаг выполняется до прекращения изменения сортируемого блока данных.
Алгоритм чет-нечетной перестановки представляет из себя сравнение элементов массива, стоящих на четных позициях, если [math]i[/math] — четное, и нечетных, если [math]i[/math] — нечетное, с соседними элементами, где [math]i[/math] — номер соответствующей итерации.
1.2 Математическое описание алгоритма
Важным критерием эффективности любого параллельного алгоритма является трудоемкость его выполнения. Введем следующие обозначения: [math]n[/math] — количество данных, [math]p[/math] — количество задействованных процессоров, [math]L[/math] — количество итераций алгоритма чет-нечетной перестановки. Тогда трудоемкость параллельного алгоритма вычисляется формулой:
[math] T = (n/p)log(n/p)+(2n/p)log p + L(2n/p) [/math].
При [math] L \lt p [/math] эффективность алгоритма Шелла выше эффективности алгоритма простой чет-нечетной перестановки.
2 Литература
- ↑ https://ru.wikipedia.org/wiki/Сортировка_Шелла — From Wikipedia, the free encyclopedia
- ↑ Kumar et al. (2003)