Метод Хаусхолдера (отражений) QR-разложения матрицы: различия между версиями
Перейти к навигации
Перейти к поиску
[досмотренная версия] | [досмотренная версия] |
Frolov (обсуждение | вклад) м |
Frolov (обсуждение | вклад) м |
||
Строка 6: | Строка 6: | ||
Кроме [[Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы, вещественный точечный вариант|классического точечного варианта]], метод имеет много других, например, блочный. | Кроме [[Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы, вещественный точечный вариант|классического точечного варианта]], метод имеет много других, например, блочный. | ||
+ | |||
+ | = Литература = |
Версия 16:53, 6 ноября 2017
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде A=QR (Q - унитарная, R — правая треугольная матрица)[1]. При этом матрица Q хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2].
Матрица отражений (Хаусхолдера) - матрица вида U=E-2ww^*, где w - вектор, удовлетворяющий равенству w^{*}w=1. Является одновременно унитарной (U^{*}U=E) и эрмитовой (U^{*}=U), поэтому обратна самой себе (U^{-1}=U).
Кроме классического точечного варианта, метод имеет много других, например, блочный.