Метод Хаусхолдера (отражений) QR-разложения матрицы: различия между версиями
Перейти к навигации
Перейти к поиску
[досмотренная версия] | [досмотренная версия] |
Frolov (обсуждение | вклад) м |
Frolov (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{level-m}} | {{level-m}} | ||
− | '''Метод Хаусхолдера''' (в советской математической литературе чаще называется '''методом отражений''') используется для разложения матриц в виде <math>A=QR</math> (<math>Q</math> - унитарная, <math>R</math> — правая треугольная матрица)<ref>В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.</ref>. При этом матрица <math>Q</math> хранится и используется не в своём явном виде, а в виде произведения матриц отражения<ref name="VOLA">Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.</ref>. | + | '''Метод Хаусхолдера''' (в советской математической литературе чаще называется '''методом отражений''') используется для разложения матриц в виде <math>A=QR</math> (<math>Q</math> - унитарная, <math>R</math> — правая треугольная матрица)<ref>В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.</ref>. При этом матрица <math>Q</math> хранится и используется не в своём явном виде, а в виде произведения матриц отражения<ref name="VOLA">Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.</ref>. |
{{Шаблон:Матрица отражений}} | {{Шаблон:Матрица отражений}} |
Версия 18:26, 20 ноября 2017
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде A=QR (Q - унитарная, R — правая треугольная матрица)[1]. При этом матрица Q хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2].
Матрица отражений (Хаусхолдера) - матрица вида U=E-2ww^*, где w - вектор, удовлетворяющий равенству w^{*}w=1. Является одновременно унитарной (U^{*}U=E) и эрмитовой (U^{*}=U), поэтому обратна самой себе (U^{-1}=U).
Кроме классического точечного варианта, метод имеет много других, например, блочный.