Участник:Дарья Соболева: различия между версиями
Строка 11: | Строка 11: | ||
Многоклассовая логистическая логистическая регрессия вместо вектора допустимых ответов <math>Y</math> принимает список из векторов ответов для каждой задачи классификаци. | Многоклассовая логистическая логистическая регрессия вместо вектора допустимых ответов <math>Y</math> принимает список из векторов ответов для каждой задачи классификаци. | ||
Далее для каждого класса строится решающая функция. | Далее для каждого класса строится решающая функция. | ||
− | |||
=== Математическое описание алгоритма === | === Математическое описание алгоритма === |
Версия 15:14, 24 октября 2017
Многоклассовая логистическая регрессия
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Логистическая регрессия (Logistic regression) -- метод построения линейного классификатора, позволяющий оценивать апостериорные вероятности принадлежности объектов классам. Многоклассовая логистическая регрессия (Multiclass Logistic regression) -- логистическая регрессия, реализованная по схеме один против всех (one-vs-rest). При таком подходе строится столько моделей логистической регрессии, сколько классов необходимо обучить.
На вход алгоритму логистической регрессии подается матрица обЪектов-признаков [math]X[/math] и вектор допустимых ответов [math]Y[/math]. Предполагается, что существует целевая функция [math]y∗ : X → Y[/math]. Задача логистической регрессии, как и любого метода машинного обучения, заключается в том, чтобы по выборке [math]X[/math] построить решающую функцию [math]a: X → Y[/math], которая приближала бы целевую функцию [math]y∗[/math].
Многоклассовая логистическая логистическая регрессия вместо вектора допустимых ответов [math]Y[/math] принимает список из векторов ответов для каждой задачи классификаци. Далее для каждого класса строится решающая функция.
1.2 Математическое описание алгоритма
Вход: обучающая выборка пар «объект, ответ» [math]X^l = \{(x_1,y_1),\dots,(x_l,y_l)\}[/math].
Случай двух классов
Положим [math]Y=\{-1,+1\}[/math]. Строится линейный алгоритм классификации [math]a: X\to Y[/math] вида [math]a(x,w) = \mathrm{sign}\left( \sum_{j=1}^D w_j f_j(x) + w_0 \right) = \mathrm{sign}\langle x,w \rangle[/math], где [math]w_j[/math] — вес [math]j[/math]-го признака, [math]w_0[/math] — порог принятия решения, [math]w=(w_0,w_1,\ldots,w_D)[/math] — вектор весов, [math]\langle x,w \rangle [/math]— скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён «константный» нулевой признак: [math]f_{0}(x)=1[/math]. Задача обучения линейного классификатора заключается в том, чтобы по выборке [math]X^l[/math] настроить вектор весов [math]w[/math]. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида: [math]Q(w) = \sum_{i=1}^L \ln\left( 1 + \exp( -y_i \langle x_i,w \rangle ) \right) \to \min_{w}[/math]. После того, как решение [math]w[/math] найдено, становится возможным не только вычислять классификацию [math]a(x) = \mathrm{sign}\langle x,w \rangle[/math] для произвольного объекта [math]x[/math], но и оценивать апостериорные вероятности его принадлежности классам: [math]\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\;y\in Y[/math], где [math]\sigma(z) = \frac1{1+e^{-z}}[/math] — сигмоидная функция.
Рассматриваемый в данной статье one-vs-rest подход позволяет легко свести задачу многоклассовой классификации к двум классам, так как предполагает построение двухклассовой логистической регрессии для каждого класса в отдельности. Метки [math]+1[/math] проставляются всем обЪектам рассматриваемого класса, а [math]-1[/math] проставляются обЪектам всех остальных классов. Для тестового объекта вычисляются предсказания всех обученных классификаторов, в качестве предсказания берется класс, с максимальной вероятностью.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро многоклассовой логистической регрессии можно представить как [math]M[/math] независимых задач логистической регрессии, где [math]M[/math] -- число классов. Затем вычисление максимальной вероятности по выходам каждой логистической регрессии.