Уровень алгоритма

Итерация алгоритма dqds: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[выверенная версия][непроверенная версия]
Строка 27: Строка 27:
 
==== Вспомогательные сведения ====
 
==== Вспомогательные сведения ====
 
Для понимания математических основ dqds-итерации полезно рассмотреть кратко её вывод, частично отражающий и историю возникновения алгоритма (подробности можно найти в <ref name="vla"/>).
 
Для понимания математических основ dqds-итерации полезно рассмотреть кратко её вывод, частично отражающий и историю возникновения алгоритма (подробности можно найти в <ref name="vla"/>).
За основу dqds-алгоритма удобно взять так называемую LR-итерацию, предшествующую хорошо-известной QR-итерации. LR-алгоритм, начиная с входной матрицы <math>T_0>0,</math> строит сходящуюся последовательность подобных <math>T_0</math> матриц <math>T_i>0,</math> итерационно используя следующие три шага:
+
За основу dqds-алгоритма удобно взять так называемую LR-итерацию, предшествующую хорошо-известной QR-итерации. LR-алгоритм, начиная с входной положительно определенной матрицы <math>T_0>0,</math> строит сходящуюся последовательность подобных <math>T_0</math> матриц <math>T_i>0,</math> итерационно используя следующие три шага:
 
#Выбрать сдвиг <math>\tau_i</math> меньший младшего собственного значения <math>T_i.</math>
 
#Выбрать сдвиг <math>\tau_i</math> меньший младшего собственного значения <math>T_i.</math>
 
#Вычислить разложение Холецкого <math>T_i-\tau^2_iI=B_i^TB_i,</math> где <math>B_i</math> - верхняя треугольная матрица с положительной диагональю.
 
#Вычислить разложение Холецкого <math>T_i-\tau^2_iI=B_i^TB_i,</math> где <math>B_i</math> - верхняя треугольная матрица с положительной диагональю.

Версия 11:07, 28 октября 2017



Алгоритм dqds нахождения
сингулярных чисел двухдиагональной матрицы
Последовательный алгоритм
Последовательная сложность [Math Processing Error]
Объём входных данных [Math Processing Error]
Объём выходных данных [Math Processing Error]
Параллельный алгоритм
Высота ярусно-параллельной формы [Math Processing Error]
Ширина ярусно-параллельной формы [Math Processing Error]


Основные авторы описания: А.Ю.Чернявский

Содержание

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Итерация алгоритма dqds является одним шагом алгоритма dqds нахождения сингулярных чисел двухдиагональной матрицы.

Сам алгоритм dqds (differential quotient-difference algorithm with shifts)[1][2] строит последовательность двухдиагональных матриц, сходящуюся к диагональной матрице, содержащей квадраты искомых сингулярных чисел. Его особенностью является высокая точность решения задачи. Вычислительным ядром алгоритма является именно внутренняя итерация, вне итераций происходит подбор сдвига [Math Processing Error] (параметер итерации, см. математическое описание алгоритма), отслеживание сходимости, а также применение различных оптимизационных "хитростей". Отметим, что внеитерационная часть алгоритма не существенна с точки зрения структуры вычислений, т.к. основные затраты ложатся на вычисления внутри итерации. Подробности и варианты внеитерационной части, а также анализ сходимости можно найти в соответствующей литературе [3] [4] [5].

1.2 Математическое описание алгоритма

1.2.1 Вспомогательные сведения

Для понимания математических основ dqds-итерации полезно рассмотреть кратко её вывод, частично отражающий и историю возникновения алгоритма (подробности можно найти в [1]). За основу dqds-алгоритма удобно взять так называемую LR-итерацию, предшествующую хорошо-известной QR-итерации. LR-алгоритм, начиная с входной положительно определенной матрицы [Math Processing Error] строит сходящуюся последовательность подобных [Math Processing Error] матриц [Math Processing Error] итерационно используя следующие три шага:

  1. Выбрать сдвиг [Math Processing Error] меньший младшего собственного значения [Math Processing Error]
  2. Вычислить разложение Холецкого [Math Processing Error] где [Math Processing Error] - верхняя треугольная матрица с положительной диагональю.
  3. [Math Processing Error]

Отметим, что два шага LR-итерации с нулевым сдвигом эквивалентны одному шагу QR-итерации. Итерационная процедура приводит матрицу к диагональному виду, тем самым вычисляя собственные значения исходной матрицы. LR-алгоритм достаточно легко может быть переформулирован с заметными упрощениями для задачи поиска сингулярных значений двухдиагональных матриц. А именно, будем вычислять последовательность двухдиагональных матриц [Math Processing Error] без непосредственного вычисления [Math Processing Error](которые в данном случае будут трехдиагональными). Пусть матрица [Math Processing Error] имеет диагональные элементы [Math Processing Error] и наддиагональные элементы [Math Processing Error], а матрица [Math Processing Error] - диагональные элементы [Math Processing Error] и наддиагональные элементы [Math Processing Error] Тогда шаг LR-итерации в терминах матриц [Math Processing Error] можно привести к простому циклу, пробегающему значения [Math Processing Error] от [Math Processing Error] до [Math Processing Error]

[Math Processing Error]
[Math Processing Error]

и вычислению [Math Processing Error] Очевидно, что работу с извлечением квадратов выгодно вести лишь после окончания работы алгоритма, поэтому можно ввести замену [Math Processing Error] что в итоге приводит к так называемому алгоритму qds. Формулы алгоритма следующие:


[Math Processing Error]
[Math Processing Error]
[Math Processing Error]


Здесь [Math Processing Error] и [Math Processing Error] - квадраты элемнтов главной и верхней побочной диагонали соответственно. Крышка означает выходные переменные, а

[Math Processing Error] - сдвиг (параметр алгоритма). Такая математическая запись наиболее компактна и соответствует так называемой qds-итерации.

1.2.2 Математическое описание итерации алгоритма dqds

Представим теперь математическую запись, приближенную к dqds-итерации (с математической точки зрения qds и dqds-итерации эквивалентны) с введенными вспомогательными переменными

[Math Processing Error] и [Math Processing Error] Итерация алгоритма dqds преобразует входную двухдиагональную матрицу [Math Processing Error] в выходную [Math Processing Error]

Входные и выходные данные: [Math Processing Error] - квадраты элементов главной и побочной диагонали входной матрицы [Math Processing Error], [Math Processing Error] - то же для вычисляемой матрицы [Math Processing Error].

Формулы метода выглядят следующим образом:


[Math Processing Error]
для[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]

1.3 Вычислительное ядро алгоритма

Вычислительным ядром алгоритма является последовательный расчёт квадратов диагональных ([Math Processing Error]) и внедиагональных ([Math Processing Error]) элементов выходной матрицы. Учитывая использование вспомогательных переменных расчёт каждой новой пары содержит по одной операции сложения, вычитания и деления, а также две операции умножения.

1.4 Макроструктура алгоритма

Алгоритм состоит из отдельного вычисления начального значения вспомогательной переменной [Math Processing Error] последующим (n-1)-кратным выполнением повторяющейся последовательности из 5 операций (+,/,*,*,-) для вычисления квадратов диагональных ([Math Processing Error]) и внедиагональных ([Math Processing Error]) элементов выходной матрицы и завершающего вычислением крайнего значения [Math Processing Error].

1.5 Схема реализации последовательного алгоритма

Отметим, что выходные данные сразу могут быть записаны на место входных (это учтено в схеме), также для хранения вспомогательных переменных [Math Processing Error] и [Math Processing Error] достаточно двух перезаписываемых переменных. Таким образом элементы главной ([Math Processing Error]) и побочной ([Math Processing Error]) диагонали входной матрицы последовательно перезаписываются соответствующими элементами выходной матрицы.

Последовательность исполнения метода следующая:

1. Вычисляется начальное значение вспомогательной переменной [Math Processing Error]

2. Производится цикл по j от 1 до n-1, состоящий из:

2.1 Вычисляется значение [Math Processing Error]
2.2 Вычисляется значение вспомогательной переменной [Math Processing Error]
2.3 Вычисляется значение [Math Processing Error]
2.4 Вычисляется значение вспомогательной переменной [Math Processing Error]

3. Вычисляется [Math Processing Error]


Легко заметить, что можно представить вычисления в другой форме, например, в виде qds-итерации (см. Математическое описание dqds-итерации), однако, именно dqds реализация вычисления позволяет достичь высокой точности[1].

1.6 Последовательная сложность алгоритма

Для выполнения одной итерации dqds необходимо выполнить:

  • [Math Processing Error] делений,
  • [Math Processing Error] умножений,
  • [Math Processing Error] сложений/вычитаний.

Таким образом одна dqds-итерация имеет линейную сложность.

1.7 Информационный граф

Рисунок 1. Граф алгоритма для n=4 без отображения входных и выходных данных.


1.8 Ресурс параллелизма алгоритма

Как видно из информационного графа алгоритма, на каждом шаге основного цикла возможно лишь параллельное выполнение операции умножения (2.2) и умножения+сложения (2.4). Это позволяет сократить число ярусов на одной итерации цикла c 5 до 4, а общее число ярусов алгоритма с 5n-4 до 4n-3. Ярусы с операциями умножения состоят из двух операций, остальные же из одной.

1.9 Входные и выходные данные алгоритма

Входные данные: Квадраты элементов основной и верхней побочной диагонали двухдиагональной матрицы (вектора [Math Processing Error] длины n и [Math Processing Error] длины n-1), а также параметр сдвига [Math Processing Error].

Объём входных данных: [Math Processing Error].

Выходные данные: Квадраты элементов основной и верхней побочной диагонали выходной двухдиагональной матрицы.

Объём выходных данных: [Math Processing Error].

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности при наличии возможности параллельного выполнения операций умножения составляет [Math Processing Error], т.е. алгоритм плохо распараллеливается.

Вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных - константа.

Описываемый алгоритм является полностью детерминированным.


2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

Алгоритм на языке Matlab может быть записать так:

d = q(1)-delta;
for j = 1:n-1
    q(j)=d+e(j);
    t=q(j+1)/q(j);
    e(j) = e(j)*t;
    d = d*t-delta;
end
q(n) = d;

Как говорилось в cхеме реализации последовательного алгоритма, вычисляемые данные записываются сразу на место входных.

2.2 Локальность данных и вычислений

Легко видеть, что локальность данных высока. Её легко повысить, размещая рядом соответствующие элементы массивов e и q, однако, это не оказывает существенного влияния на производительность в силу константного количества операций относительно объема обрабатываемых данных.

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
Рисунок 2. Итерация алгоритма dqds. Общий профиль обращений в память

На рис. 2 представлен профиль обращений в память для реализации итерации алгоритма dqds. Данный профиль внешне устроен очень просто и состоит из двух параллельно выполняемых последовательных переборов. Отметим, что общее число обращений в память всего в 3 раза больше числа задействованных данных, что говорит о том, что данные повторно используют редко. Зачастую это сигнализирует о достаточно невысокой локальности.

Рассмотрим более детально строение одного из переборов (второй устроен практически идентично). На рис. 3 показан выделенный на рис. 2 небольшой фрагмент 1. Видно, что на каждом шаге в данном переборе выполняется три обращения в память; подобное строение говорит о высокой пространственной локальности, однако низкой временной, поскольку данные повторно используются только по 3 раза.

Поскольку данная структура обращений и составляет общий профиль, то же самое можно говорить и о локальности всего профиля.

Рисунок 3. Профиль обращений, фрагмент 1


2.2.1.2 Количественная оценка локальности

Оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.

На рисунке 4 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Результат получен достаточно неожиданный – производительность работы с памятью очень невелика. Оценка daps для данного профиля сравнима с реализациями самых неэффективных алгоритмов в части работы с памятью – тестов RandomAccess и неэффективных вариантов обычного перемножения матриц. Отчасти это может объясняться низкой временной локальностью. Однако в данном случае причина может также заключаться в том, что в данной реализации объем вычислений на одно обращение в память достаточно велик, что может приводить к недостаточной загруженности подсистемы памяти. В таком случае, несмотря на в целом неплохую эффективность работы с памятью, производительность будет достаточно низка.

Рисунок 4. Сравнение значений оценки daps

2.3 Возможные способы и особенности параллельной реализации алгоритма

Итерация dqds практически полностью последовательна. Единственная возможность - одновременное выполнение операции умножения (2.3) и операции (2.4) умножения и сложения, что дает небольшой выигрыш в производительности.

2.4 Масштабируемость алгоритма и его реализации

Алгоритм не является масштабируемым, максимального эффекта ускорения можно добиться на двух независимых процессорах.

Проведём исследование масштабируемости вширь реализации согласно методике. Исследование проводилось на суперкомпьютере "Ломоносов-2" Суперкомпьютерного комплекса Московского университета.

Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров 1;
  • размер матрицы [1000 : 260000] с шагом 500.

В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:

  • минимальная эффективность реализации 2.559e-06%;
  • максимальная эффективность реализации 2.492e-08%.

На следующих рисунках приведены графики производительности и эффективности выбранной реализации DQDS в зависимости от изменяемых параметров запуска.

Рисунок 8. Параллельная реализация алгоритма dqds. Изменение производительности в зависимости от числа процессоров и размера матрицы.
Рисунок 9. Параллельная реализация алгоритма dqds. Изменение эффективности в зависимости от числа процессоров и размера матрицы.

Исследованная параллельная реализация на языке C

2.5 Выводы для классов архитектур

Эффективное выполнение алгоритма возможно только на вычислительных устройствах с одним или двумя ядрами.

2.6 Существующие реализации алгоритма

Сам алгоритм dqds реализован в функции xBDSQR пакета LAPACK и используется при её вызове без расчёта сингулярных векторов.

3 Литература

  1. Перейти обратно: 1,0 1,1 1,2 Деммель Д. Вычислительная линейная алгебра. – М : Мир, 2001.
  2. Hogben L. (ed.). Handbook of linear algebra. – CRC Press, 2006.
  3. Fernando K. V., Parlett B. N. Accurate singular values and differential qd algorithms //Numerische Mathematik. – 1994. – Т. 67. – №. 2. – С. 191-229.
  4. Parlett B. N., Marques O. A. An implementation of the dqds algorithm (positive case) //Linear Algebra and its Applications. – 2000. – Т. 309. – №. 1. – С. 217-259.
  5. Aishima K. et al. On convergence of the DQDS algorithm for singular value computation //SIAM Journal on Matrix Analysis and Applications. – 2008. – Т. 30. – №. 2. – С. 522-537.