DevbunovaViliana / Метод главных компонент (PСA): различия между версиями
[непроверенная версия] | [непроверенная версия] |
Строка 56: | Строка 56: | ||
<math> E_{k+1} = \frac{M^TME_k}{\|M^TME_k\|} </math> -- сойдется к собственному вектору, отвечающему максимальному значению, тогда последовательность | <math> E_{k+1} = \frac{M^TME_k}{\|M^TME_k\|} </math> -- сойдется к собственному вектору, отвечающему максимальному значению, тогда последовательность | ||
<math>\lambda_{k} = \frac{(E_k,M^TME_k)}{(E_k,E_k)}</math> сойдется к максимальному собственному значению. | <math>\lambda_{k} = \frac{(E_k,M^TME_k)}{(E_k,E_k)}</math> сойдется к максимальному собственному значению. | ||
− | *4. Теперь вместо выражения M^TM в пункте 3 используем | + | *4. Теперь вместо выражения <math>M^TM</math> в пункте 3 используем |
<math> M^TM - \lambda_k E_k E_k^T</math> | <math> M^TM - \lambda_k E_k E_k^T</math> | ||
*5. Повторяем пункт 3 и 4 столько раз, какой размерности хотим получить новое пространство. | *5. Повторяем пункт 3 и 4 столько раз, какой размерности хотим получить новое пространство. |
Версия 17:58, 1 декабря 2020
Автор: Девбунова Вилиана Олеговна, студент ММП ВМК МГУ (417)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод Главных Компонент (англ. Principal Components Analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ.Karl Pearson) в 1901 г. Применяется во многих областях, таких как распознавание образов, компьютерное зрение, сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных или к сингулярному разложению матрицы данных.
Иногда метод главных компонент называют преобразованием Кархунена-Лоэва (англ. Karhunen-Loeve)или преобразованием Хотеллинга (англ. Hotelling transform). Другие способы уменьшения размерности данных — это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, поиск наилучшей проекции (англ. Projection Pursuit), нейросетевые методы «узкого горла», самоорганизующиеся карты Кохонена и др.
1.2 Математическое описание алгоритма
Задача анализа главных компонент имеет много версий, вот базовые из них:
- аппроксимировать данные линейными многообразиями меньшей размерности;
- найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных максимален;
- найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально;
- для данной многомерной случайной величины построить такое ортогональное преобразование координат, в результате которого корреляции между отдельными координатами обратятся в нуль.
Мы будем рассматривать только один вариант.
1.3 Вычислительное ядро алгоритма
Мы будем реализовывать PCA с помощью нахождения подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально. Для вычисления собственных значений и соответствующих им собственных векторов будем использовать метод степенных итераций
1.3.1 Алгоритм вычисления собственных значений метод степенных итераций
Метод степенных итераций - это итерационный метод вычисления собственных значений и собственных векторов вещественной матрицы. Алгоритм вычисляет вектор e, содержащий собственные значения , и матрицу E, содержащую соответствующие собственные векторы, т. е. e_i-собственное значение, а столбец E_i-ортонормированный собственный вектор для e_i, для i = 1,...,n.
1.3.2 Задача нахождения подпространства меньшей размерности
Будем искать подпространство меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально. Будем использовать жадную стратегию: Будем подбирать единичные вектора E_i, такие что норма проекций на этот вектор будет максимальна.
- 1.||M E_1||^2 → max_{E_1}
- 2. |M E_2||^2 → max_{E_2} и E_1 ортогонален E_2
- 3. и т.д.
Запишем задачу Лагранжа: \frac{d}{dE_1}(E_1^TM^TME_1 - \lambda(E_1^TE_1 -1) = 0
M^TME_1 - \lambda E_1 = 0 Значит, задача сводится к последовательному нахождению собственных векторов, отвечающих максимальным собственным значениям матрицы M^TM
Алгоритм:
- 1. Вычислить эрмитов матрицу (найти сопряженную транспонированную), M^T из матрицы M.
- 2. Вычислить умножение M^TM
- 3. Вычислить собственные значения и собственные векторы M^TM, используя аметод степенных итераций.
- 4. Отсортировать собственные значения и соответствующие столбцы собственных векторов в порядке убывания собственных значений. И взять первые k собственных векторов, отвечающих максимальным собственным значениям.
1.3.3 Анализ основных компонентов (PCA)
Анализ главных компонент, или сокращенно PCA, - это математическая процедура, которая преобразует набор (возможно коррелированных) переменных в меньшее число некоррелированных переменных, которые называют главными компонентами. Цель анализа главных компонент состоит в том, чтобы уменьшить размерность (количество признаков) набора данных, но сохранить как можно больше исходной изменчивости в данных. На первый основной компонент приходится большая часть изменчивости данных, на второй основной компонент приходится большая часть оставшейся изменчивости и т. д. PCA можно рассматривать как метод проекции, при котором данные с n-признаками проецируются на подпространство с n (или меньшим количеством) признаков, сохраняя при этом большую часть информации. Мы будем внешне задавать размерность признанного пространства, которое хотим получить k.
1.4 Макроструктура алгоритма
Макроструктура алгоритма:
- 1. Вычислить M^T из матрицы M.
- 2. Вычислить умножение M^TM
- 3. В цикле до сходимости вычислять:
E_{k+1} = \frac{M^TME_k}{\|M^TME_k\|} -- сойдется к собственному вектору, отвечающему максимальному значению, тогда последовательность \lambda_{k} = \frac{(E_k,M^TME_k)}{(E_k,E_k)} сойдется к максимальному собственному значению.
- 4. Теперь вместо выражения M^TM в пункте 3 используем
M^TM - \lambda_k E_k E_k^T
- 5. Повторяем пункт 3 и 4 столько раз, какой размерности хотим получить новое пространство.
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Wikipedia contributors. Principal component analysis. In Wikipedia, The Free Encyclopedia from https://en.wikipedia.org/wiki/Principal_component_analysis