Участник:AleksLevin/Алгоритм Ланцоша вычисления собственных значений симметричной матрицы для точной арифметики (без переортогонализации)
Основные авторы описания: Левин А.Д. (студент, кафедра вычислительных методов, 604 группа)
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков n, что к ним нельзя применить прямые методы из-за ограничений по времени и памяти.
Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых k собственных чисел и соответствующих им собственных векторов [1, c.276].
Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы A соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы A [2, с.381].
В данной статье рассматривается вариант алгоритма Ланцоша, в котором опущено влияние ошибок округления на вычислительный процесс, хотя на практике этому посвящается отдельное внимание и существуют различные методы решения данной проблемы.
1.2 Математическое описание алгоритма
Для лучшего понимания описания, данного в этом пункте статьи, рекомендуется ознакомиться с параграфом 6.6 Методы Крыловского подпространства [2, с.313]. Здесь же дано краткое описание всех переменных, математических операций и необходимый теоретический минимум.
Алгоритм Ланцоша для вычисления k собственных значений и собственных векторов вещественной симметричной матрицы A=A^T в точной арифметике [2, с.381] :
\begin{align} q_1 = & b/ \|b\|_2,\; \beta_0 = 0,\; q_0 = 0\\ for \; & j = 1 \; to \; k \\ & z = Aq_j\\ & \alpha_j = q^T_j z\\ & z = z - \alpha_j q_j - \beta_{j-1}q_{j-1}\\ & \beta_j = \|z\|_2\\ & If \; \beta_j == 0 \; then\; stop\; the\; algorithm \\ & \; q_{j+1} = z / \beta_j \\ & compute\; eigenvalues\; and \;eigenvectors\;of \;matrix \;T_j\;and\;estimate \;the\; errors\\ end \; & for \end{align}
В продемонстрированном выше алгоритме b - заданный вещественный вектор. Также полагается известным алгоритм вычисления произведения матрицы A на вектор x.
Введём матрицу Крылова, определяемую следующим соотношением: K_j = [b,Ab,A^2b,...,A^{j-1}b].
Далее, на практике, матрица K заменяется матрицей Q, такой, что при любом числе k линейные оболочки первых k столбцов в K и Q являются одним и тем же подпространством [2,c.315]. Тогда матрица Q, в отличие от матрицы K, хорошо обусловлена и легко обратима. В результате получаем матрицу Q_j = [q_1, q_2, \dots, q_j] размерности n \times j, столбцы которой ортогональны и являются базисом подпространства Крылова.
В алгоритме Ланцоша вычислению подлежит столько первых столбцов в матрице Q_j, сколько необходимо для получения требуемого приближения к решению A\,x\,=b\,\,(A\,x=\lambda \, x).
Затем на каждом шаге цикла формируем симметричную трёхдиагональную матрицу T_j = Q^T_j A Q, к которой применяем процесс Рэлея-Ритца для поиска её собственных значений. Эти собственные значения, они же числа Ритца, и полагаются приближёнными собственными значениями исходной матрицы A.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Парлетт Б. Симметричная проблема собственных значений. Численные методы //М.: Мир. - 1983. - С. 276-294
[2] James W. Demmel Вычислительная линейная алгебра. Теория и приложения //Мир. - 2001. С. 381-391