Method level

Difference between revisions of "Orthogonalization method"

From Algowiki
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
Line 19: Line 19:
 
The above operator projects the vector <math>\mathbf{a}</math> on the direction of the vector <math>\mathbf{b}</math>.
 
The above operator projects the vector <math>\mathbf{a}</math> on the direction of the vector <math>\mathbf{b}</math>.
  
Ортогональность векторов <math>\mathbf{a}</math> и <math>\mathbf{b}</math> достигается на шаге (2).
+
The orthogonality of the first two vectors in the orthogonalization process below is attained at Step (2).
  
Классический процесс Грама — Шмидта выполняется следующим образом:
+
The classical Gram--Schmidt process is performed as follows:
  
 
: <math>
 
: <math>
Line 34: Line 34:
  
  
На основе каждого вектора <math>\mathbf{b}_j \;(j = 1 \ldots N)</math> может быть получен нормированный вектор: <math>\mathbf{e}_j = {\mathbf{b}_j\over \| \mathbf{b}_j \|}</math> (у нормированного вектора направление будет таким же, как у исходного, а норма — единичной). Норма в формуле - согласованная со скалярным произведением: <math>\| x \| = \sqrt{\langle x, x \rangle}</math>
+
From each vector <math>\mathbf{b}_j \;(j = 1 \ldots N)</math>, one can obtain a normalized vector: <math>\mathbf{e}_j = {\mathbf{b}_j\over \| \mathbf{b}_j \|}</math> (the normalized vector has the same direction as the original one, while its norm is 1 ). Here, the norm is consistent with the scalar product: <math>\| x \| = \sqrt{\langle x, x \rangle}</math>
  
Результаты процесса Грама — Шмидта:
+
The output of the Gram--Schmidt process:
  
<math>\mathbf{b}_1,\;\ldots,\;\mathbf{b}_N</math> — система ортогональных векторов либо
+
The system <math>\mathbf{b}_1,\;\ldots,\;\mathbf{b}_N</math> of orthogonal vectors or the system <math>\mathbf{e}_1,\;\ldots,\;\mathbf{e}_N</math> of orthonormal vectors.
  
<math>\mathbf{e}_1,\;\ldots,\;\mathbf{e}_N</math> — система ортонормированных векторов.
+
In practice, the most often used form of the method is the [[Метод ортогонализации с переортогонализацией|orthogonalization method with re-orthogonalization]].
 
 
Наиболее используемой на практике формой метода является [[Метод ортогонализации с переортогонализацией|вариант метода ортогонализации с переортогонализацией]].
 
  
 
[[Category:Finished articles]]
 
[[Category:Finished articles]]
  
 
[[ru:Метод ортогонализации]]
 
[[ru:Метод ортогонализации]]

Revision as of 18:45, 5 March 2018


The basic authors of the description: Инжелевская Дарья Валерьевна(text), А.В.Фролов(editing)

The Gram--Schmidt orthogonalization is a method that constructs a set of orthogonal vectors {\displaystyle \mathbf {b}_{1},\;\ldots ,\;\mathbf {b} _{N}} or a set of orthonormal vectors {\displaystyle \mathbf {e} _{1},\;\ldots ,\;\mathbf {e}_{N}} from a given set of linearly independent vectors {\displaystyle \mathbf {a} _{1},\;\ldots ,\;\mathbf {a} _{N}}. This is done in such a way that each vector {\displaystyle \mathbf {b} _{j}} or {\displaystyle \mathbf {e} _{j}} is a linear combination of the vectors {\displaystyle \mathbf {a} _{1},\;\ldots ,\; \mathbf {a} _{j}}. The process may be used for obtaining the QR decomposition, where the system of original vectors is the columns of a given matrix, while the columns of Q are the result of orthogonalization. Thus, unlike the Givens (rotation) and Householder (reflection) methods, which are based on the left unitary/orthogonal reduction to triangular form, the orthogonalization method reduces the original matrix by right non-orthogonal (triangular) transformations to a unitary/orthogonal matrix.

Mathematical foundations of the method

The classical orthogonalization method for the QR decomposition of a square matrix (real version) is fairly simple. However, due to its instability, which manifests itself in the non-orthogonality of resulting systems, the method is very rarely used in practice.

Let \mathbf{a}_1,\;\ldots,\;\mathbf{a}_N be linearly independent vectors. Define the projection of a vector \mathbf{a} on (the direction of) a vector \mathbf{b} by the formula \mathbf{proj}_{\mathbf{b}}\,\mathbf{a} = {\langle \mathbf{a}, \mathbf{b} \rangle \over \langle \mathbf{b}, \mathbf{b}\rangle} \mathbf{b} ,

where \langle \mathbf{a}, \mathbf{b} \rangle is the scalar product of the vectors \mathbf{a} and \mathbf{b}.

In the k-dimensional real space, the scalar product of the vectors \mathbf{ a= [a_1, a_2, ...,a_k]} and \mathbf{ b= [b_1, b_2, ..., b_k]} is defined as

\langle \mathbf{a}, \mathbf{b} \rangle=\sum_{i=1}^k a_ib_i=a_1b_1+a_2b_2+\cdots+ a_kb_k.

The above operator projects the vector \mathbf{a} on the direction of the vector \mathbf{b}.

The orthogonality of the first two vectors in the orthogonalization process below is attained at Step (2).

The classical Gram--Schmidt process is performed as follows:

{\begin{array}{lclr} {\mathbf {b}}_{1}&=&{\mathbf {a}}_{1}&(1)\\ {\mathbf {b}}_{2}&=&{\mathbf {a}}_{2}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{2}&(2)\\ {\mathbf {b}}_{3}&=&{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{3}&(3)\\ {\mathbf {b}}_{4}&=&{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{3}}}\,{\mathbf {a}}_{4}&(4)\\ &\vdots &&\\{\mathbf {b}}_{N}&=&{\mathbf {a}}_{N}-\displaystyle \sum _{{j=1}}^{{N-1}}{\mathbf {proj}}_{{{\mathbf {b}}_{j}}}\,{\mathbf {a}}_{N}&(N) \end{array}}


From each vector \mathbf{b}_j \;(j = 1 \ldots N), one can obtain a normalized vector: \mathbf{e}_j = {\mathbf{b}_j\over \| \mathbf{b}_j \|} (the normalized vector has the same direction as the original one, while its norm is 1 ). Here, the norm is consistent with the scalar product: \| x \| = \sqrt{\langle x, x \rangle}

The output of the Gram--Schmidt process:

The system \mathbf{b}_1,\;\ldots,\;\mathbf{b}_N of orthogonal vectors or the system \mathbf{e}_1,\;\ldots,\;\mathbf{e}_N of orthonormal vectors.

In practice, the most often used form of the method is the orthogonalization method with re-orthogonalization.