Уровень алгоритма

Алгоритм проталкивания предпотока

Материал из Алговики
Перейти к: навигация, поиск


Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм проталкивания предпотока[1] (англ. Push-Relabel Method, или Preflow-Push Method) предназначен для решения задачи о максимальном потоке в транспортной сети. Время работы алгоритма [math]O(mn \ln n)[/math] (при использовании динамических деревьев Тарьяна-Слитора[2][3]).

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

Алгоритм основан на локальных операциях и допускает распараллеливание, в том числе на распределённых системах[4]. Распределение вершин графа по процессорам может производиться на основе результатов предварительного поиска в ширину от вершины-источника потока, так чтобы на каждом процессоре обрабатывалось примерно одинаковое количество вершин одного и того же расстояния от источника.

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Goldberg, Andrew V, and Robert Endre Tarjan. “A New Approach to the Maximum-Flow Problem.” Journal of the ACM 35, no. 4 (October 1988): 921–40. doi:10.1145/48014.61051.
  2. Sleator, Daniel D, and Robert Endre Tarjan. “A Data Structure for Dynamic Trees,” STOC'81, 114–22, New York, USA: ACM Press, 1981. doi:10.1145/800076.802464.
  3. Sleator, Daniel Dominic, and Robert Endre Tarjan. “Self-Adjusting Binary Search Trees.” Journal of the ACM 32, no. 3 (July 1985): 652–86. doi:10.1145/3828.3835.
  4. Jiang, Jincheng, and Lixin Wu. “A MPI Parallel Algorithm for the Maximum Flow Problem ,” Geocomputation 2013.