Уровень алгоритма

Восполнение матриц с дополнительной информацией

Материал из Алговики
Перейти к навигации Перейти к поиску


Восстановление матриц
Последовательный алгоритм
Последовательная сложность $O(n^3)$
Объём входных данных [math]\frac{n (n + 1)}{2}[/math]
Объём выходных данных [math]\frac{n (n + 1)}{2}[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n)[/math]
Ширина ярусно-параллельной формы [math]O(n^2)[/math]


Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Пусть [math]X \in \mathbb{R}^{n_1 \times n_2} - [/math] неизвестная малоранговая матрица. Нашей целью является восполнение матрицы [math]X[/math], то есть нахождение всех её элементов, по некоторому малому их набору и дополнительной информации. Под дополнительной информацией понимаются линейные пространства [math]L_A[/math] и [math]L_B[/math], содержащие столбцы и строки матрицы [math]X[/math] соответственно. Если [math]L_A[/math] и [math]L_B[/math] тривиальные (то есть совпадают с [math]\mathbb{R}^{n_1}[/math] и [math]\mathbb{R}^{n_2}[/math]), то задача сводиться к задаче обычного восполнения матриц.

Для решения этой задачи применяется итеративный метод SVPWS, который является глубокой модификацией метода SVP. На каждой итерации мы будем делать градиентный шаг и проектироваться обратно на множество матриц малого ранга (с помощью SVD), получая тем самым очередное приближение к исходной неизвестной матрице [math]X[/math].

1.2 Математическое описание алгоритма

Нам известно, что [math]Im(X) \subset L_A, \ Im(X^T) \subset L_B [/math]. Пусть [math]dim(L_A) = s_1, \ dim (L_B) = s_2[/math], тогда [math]A \in \mathbb{R}^{n_1 \times s_1}[/math] и [math]B \in \mathbb{R}^{n_2 \times s_2}[/math] [math]-[/math] ортонормированные матрицы базисов этих пространств, соответственно. Для матрицы [math]X[/math] существует представление: [math]X = AZB^T, Z \in \mathbb{R}^{s_1 \times s_2}[/math]. Матрицы [math]X[/math] и [math]Z[/math] имеют взаимно однозначное соответствие, а матрица [math]Z[/math] имеет существенно меньшие размеры, поэтому мы будет решать некоторую оптимизационную задачу для неё:

[math]\min_{Z} f(Z) = \frac{1}{2} ||\mathcal{P}_{\Omega}(AZB^T - X)||^2_2, \; \; rank(Z) \leq r, \text{ где } [/math]

[math]\Omega \subset [n_1] \times [n_2] - [/math] множество известных нам индексов, а [math]\mathcal{P}_{\Omega}(X) = 1[(i, j) \in \Omega] \circ X[/math] - проектор на это множество.

Пусть решением этой задачи является матрица [math]\tilde Z[/math]. Тогда построим матрицу [math]\tilde X = A \tilde ZB^T[/math]. Матрица [math]\tilde X[/math] и будем задачи матричного восполнения. Минимизировать этот функционал будем с помощью алгоритма SVP с оператором [math]\mathcal{A}(Z) = \mathcal{P}_\Omega(AZB^T)[/math].

[math]Z_{t+1} = \mathcal{P}_r(Z_{t} - \eta_t \nabla f(Z_{t})) = \mathcal{P}_r(Z_{t} - \eta_t \mathcal{A^*}(\mathcal{A}(Z_{t}) - b)), [/math]

где [math]\mathcal{P}_r - [/math] проектор на множество матриц ранга не выше [math]r[/math] (SVD).

Найдя формулу сопряженного оператора: [math]\mathcal{A^*}(X) = A^T \, \mathcal{P}_{\Omega}(X)B [/math] получим алгоритм:

[math]Z_{t+1} = \mathcal{P}_r[Z_{t} - \eta_t A^T\mathcal{P}_{\Omega}(AZ_tB^T - X)B] [/math]

1.3 Макроструктура алгоритма

1.4 Схема реализации последовательного алгоритма

1.5 Последовательная сложность алгоритма

1.6 Информационный граф

1.7 Ресурс параллелизма алгоритма

1.8 Входные и выходные данные алгоритма

1.9 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

[1] Guaranteed Rank Minimization via Singular Value Projection.Raghu Meka, Prateek Jain, Inderjit S. Dhillon // arXiv:0909.5457

[2] Speedup Matrix Completion with Side Information: Application to Multi-Label Learning. M Xu, R Jin, ZH Zhou