Участник:F-morozov/Нахождение собственных чисел квадратной матрицы методом QR разложения (4)
Эта работа успешно выполнена Преподавателю: в основное пространство, в подстраницу Данное задание было проверено и зачтено. Проверено Frolov и VadimVV. |
Нахождение собственных чисел квадратной матрицы методом QR-разложения | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3 + N \times n^2)[/math] |
Объём входных данных | [math]n^2[/math] |
Объём выходных данных | [math]n[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]N \times O(n)[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Основные авторы описания: Ф. В. Морозов, Н. Ф. Пащенко
Описание составлено совместно, точно выделить вклад отдельных авторов невозможно.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Для решения ряда задач механики, физики, химии требуется получение всех собственных значений (собственных чисел), а иногда и всех собственных векторов некоторых матриц. Эту задачу называют полной проблемой собственных значений[1]. Если рассматриваются матрицы общего вида, порядок которых не больше тысячи (нескольких тысяч), то для вычисления всех собственных значений (и собственных векторов) можно рекомендовать QR-алгоритм. Он был разработан в начале 1960-х годов независимо В. Н. Кублановской (Россия) и Дж. Фрэнсисом (Великобритания)[2].
Нахождение собственных чисел матрицы [math]A[/math] методом QR-разложения (QR-алгоритм) заключается в построении последовательности матриц, сходящейся по форме к клеточному правому треугольному виду. Матрицы [math]A_k[/math] данной последовательности строятся с использованием QR-разложения таким образом, что они подобны между собой и подобны исходной матрице [math]A[/math], поэтому их собственные значения равны. Характеристический многочлен клеточной правой треугольной матрицы равен произведению характеристических многочленов ее диагональных клеток[1]. Его корни — собственные значения матрицы, которые согласно вышесказанному и являются искомыми.
1.2 Математическое описание алгоритма
Известно, что произвольная квадратная матрица может быть представлена в виде произведения унитарной (в вещественном случае ортогональной) и верхней треугольной матриц. Такое разложение называется QR-разложением.
1.2.1 QR-алгоритм
Пусть [math]A_0 = A[/math] — исходная матрица. Для [math]k = 1, 2, \ldots[/math]:
- [math]A_{k-1} = Q_kR_k[/math], где [math]Q_k[/math] — унитарная (ортогональная) матрица, [math]R_k[/math] — верхняя треугольная матрица;
- [math]A_k = R_kQ_k[/math].
Заметим, что [math]A_k = R_kQ_k = Q_k^{-1}A_{k-1}Q_k[/math], то есть матрицы [math]A_k[/math] и [math]A_{k-1}[/math] подобны для любого [math]k[/math]. Таким образом, матрицы [math]A_1, A_2, \ldots[/math] подобны исходной матрице [math]A[/math] и имеют те же собственные значения. При выполнении некоторых условий последовательность [math]\{A_k\}[/math] сходится к верхней треугольной матрице [math]\hat{A}[/math], на диагонали которой расположены искомые собственные значения.
1.2.2 Сходимость QR-алгоритма
Сходимость QR-алгоритма трактуется как сходимость к нулю поддиагонального блока матрицы [math]A_k[/math].
Предположим, что для матрицы [math]A \in \mathbb{C}^{n \times n}[/math] выполнены следующие условия:
- [math]A = X \Lambda X^{-1}, \quad \Lambda = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix}, \quad \Lambda_1 \in \mathbb{C}^{m \times m}, \quad \Lambda_2 \in \mathbb{C}^{r \times r}[/math];
- [math]\left | \lambda_1 \right | \ge \ldots \ge \left | \lambda_m \right | \gt \left | \lambda_{m+1} \right | \ge \ldots \ge \left | \lambda_{m+r} \right | \gt 0, \quad \{ \lambda_1, \ldots, \lambda_m \} = \lambda(\Lambda_1), \quad \{ \lambda_{m+1}, \ldots, \lambda_{m+r} \} = \lambda(\Lambda_2)[/math];
- ведущая подматрица порядка [math]m[/math] в [math]X^{-1}[/math] невырожденная.
И пусть QR-алгоритм порождает последовательность матриц
- [math]A_k = \begin{bmatrix}A_{11}^{(k)} & A_{12}^{(k)} \\ A_{21}^{(k)} & A_{22}^{(k)}\end{bmatrix}[/math].
Тогда [math]A_{21}^{(k)} \rightarrow O[/math] при [math] k \rightarrow \infty[/math].
Если блок [math]A_{21}^{(k)}[/math] достаточно мал, то он заменяется нулевым, и собственные значения ищутся для диагональных блоков [math]A_{11}^{(k)}[/math] и [math]A_{22}^{(k)}[/math].
Если условия 1-3 выполнены для всех [math]1 \le m \le n - 1[/math], то к нулю сходятся все поддиагональные блоки. А это значит, что все поддиагональные элементы матриц [math]A_k[/math] стремятся к нулю, и диагональные элементы матриц [math]A_k[/math] сходятся к искомым собственным значениям матрицы [math]A[/math][2].
1.2.3 Сокращение затрат на одну итерацию
Одна QR-итерация для матрицы общего вида требует [math]O(n^3)[/math] арифметических операций. Это очень большие затраты, даже если итераций не очень много (обычно их требуется не больше 5 на каждое собственное значение). Для решения данной проблемы используют тот факт, что с помощью отражений или вращений матрицу [math]A[/math] можно привести к унитарно подобной верхней хессенберговой (почти треугольной) матрице:
- [math]H = (h_{ij}), \quad h_{ij} = 0[/math] при [math]i \gt j + 1[/math];
- [math]H = PAP^*[/math], где [math]P[/math] — произведение конечного числа отражений (или вращений).
Затем QR-алгоритм применяется к матрице [math]A_0 = H[/math].
Приведение к хессенберговой форме требует [math]O(n^3)[/math] операций, но после него любая QR-итерация будет выполняться за [math]O(n^2)[/math] операций. Сокращение затрат на одну итерацию объясняется инвариантностью хессенберговой формы по отношению к QR-итерациям[2].
1.2.4 Уменьшение числа итераций
Скорость сходимости алгоритма зависит от отношения модулей собственных значений: чем больше отношение [math]|\lambda_{m+1}| / |\lambda_m|[/math], тем медленнее убывает поддиагональный [math](n-m) \times m [/math] блок. Для увеличения скорости сходимости алгоритма можно перейти от матрицы [math]A[/math] к матрице [math](A - sI)[/math], где [math]s \in \mathbb{C}[/math], а [math]I[/math] — единичная матрица, в надежде, что [math]|\lambda_{m+1} - s| / |\lambda_m - s| \ll |\lambda_{m+1}| / |\lambda_m|[/math].
Такой подход называется QR-алгоритмом со сдвигами и имеет следуюший вид:
[math]A_0 = A[/math] — исходная матрица. Для [math]k = 1, 2, \ldots[/math]:
- [math]A_{k-1} - s_kI= Q_kR_k[/math] (QR-разложение);
- [math]A_k = R_kQ_k + s_kI[/math].
QR-алгоритм со сдвигами является частным случаем обобщенного QR-алгоритма (QR-алгоритма с мультисдвигами), в котором на каждой итерации используется полином [math]f_k[/math]:
- [math]f_k(A_{k-1}) = Q_kR_k[/math];
- [math]A_k = Q_k^{-1}A_{k-1}Q_k[/math].
1.3 Вычислительное ядро алгоритма
Основное время работы алгоритма приходится на вычисление QR-разложения на итерациях алгоритма.
Для получения QR-разложения могут использоваться метод Хаусхолдера, метод Гивенса или процесс ортогонализации Грама-Шмидта.
При использовании хессенберговой формы приведение к ней имеет сложность, сравнимую с последующими итерациями QR-алгоритма.
1.4 Макроструктура алгоритма
Основные элементы алгоритма:
- (опционально) приведение к хессенберговой форме;
- QR-разложение;
- умножение плотных матриц.
1.5 Схема реализации последовательного алгоритма
Пример реализации на языке Python:
def get_eigenvalues(A, use_hessenberg_form):
"""Вычисление собственных значений матрицы методом QR-разложения
Параметры:
A -- квадратная матрица
use_hessenberg_form -- использовать ли приведение к хессенберговой форме
"""
if use_hessenberg_form:
A = to_hessenberg_form(A) #Матрица приводится к хессенберговой форме
while not is_upper_triangular(A): #Является ли матрица верхней треугольной
Q, R = QR_decomposition(A) #Производится QR-разложение матрицы
A = R * Q
#Собственными значениями являются диагональные элементы полученной матрицы
return diagonal_items(A)
1.6 Последовательная сложность алгоритма
Рассмотрим сложность отдельных элементов алгоритма:
- QR-разложение имеет сложность [math]O(n^3)[/math] арифметических операций;
- сложность перемножения квадратных матриц равна [math]n^3 + O(n^2)[/math];
- для проверки, является ли матрица верхней треугольной, необходимо [math]O(n^2)[/math] операций.
Таким образом, каждая итерация имеет кубическую сложность и, если алгоритм сходится через [math]N[/math] итераций, общая сложность составит [math]N \times O(n^3)[/math] арифметических операций.
Сложность построения хессенберговой формы составляет [math]O(n^3)[/math], одна итерация алгоритма для хессенберговой матрицы имеет сложность [math]O(n^2)[/math]. Общая сложность QR-алгоритма с предварительным приведением матрицы к хессенберговой форме равна [math]O(n^3 + N \times n^2)[/math] арифметических операций, где [math]N[/math] — число итераций алгоритма.
1.7 Информационный граф
Узлы графа:
- [math]QR[/math] — QR-разложение;
- [math]\times[/math] — перемножение матриц;
- [math]isUT[/math] — проверка, является ли матрица верхней треугольной.
1.8 Ресурс параллелизма алгоритма
Несмотря на то что QR-алгоритм является последовательным, действия, выполняемые на каждой итерации, могут быть эффективно выполнены параллельно:
- параллельная сложность QR-разложения составляет [math]O(n)[/math] при использовании метода Гивенса или [math]O(n^2)[/math] при использовании метода Хаусхолдера;
- параллельная сложность умножения матриц равна [math]O(n)[/math];
- для проверки, является ли матрица верхней треугольной, достаточно одного яруса.
Таким образом, при классификации по высоте ярусно-параллельной формы сложность равна [math]N \times O(n)[/math] или [math]N \times O(n^2)[/math] в зависимости от используемого метода QR-разложения.
При классификации по ширине ярусно-параллельной формы, сложность QR-алгоритма составляет [math]O(n^2)[/math].
1.9 Входные и выходные данные алгоритма
Входные данные: плотная квадратная матрица [math]A[/math] порядка [math]n[/math].
Объем входных данных: [math]n^2[/math].
Выходные данные: собственные числа матрицы [math]A[/math].
Объем выходных данных: [math]n[/math].
1.10 Свойства алгоритма
- Соотношение последовательной и параллельной сложности является квадратичным или линейным в зависимости от метода QR-разложения.
- Вычислительная мощность алгоритма равна [math]N \times O(n)[/math].
- Число итераций [math]N[/math] заранее неизвестно, то есть алгоритм недетерминирован.
- Если рассмотренные в разделе «Сходимость QR-алгоритма» условия 1-3 не выполнены, то, возможно, ни один из поддиагональных блоков не сходится к нулю. Это означает, что в общем случае QR-алгоритм не обязан сходиться. Однако внеся в элементы матрицы сколь угодно малые возмущения, всегда можно удовлетворить указанным условиям.
- Скорость сходимости алгоритма зависит от отношения собственных значений, чем ближе по модулю собственные значения, тем медленее скорость сходимости.
- Если матрица [math]A[/math] эрмитова, то хессенбергова матрица [math]H[/math] будет трехдиагональной, и сложность одной QR-итерации составит [math]O(n)[/math] операций.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
Исследование проводилось на узлах раздела test суперкомпьютера "Ломоносов"[3] Суперкомпьютерного комплекса Московского университета.
Исследовалась реализация QR-алгоритма из библиотеки Intel MKL версии 11.2.0 (функции LAPACKE_sgehrd и LAPACKE_shseqr). Была написана программа на языке C, использовался компилятор Intel C++. Пример компиляции программы и запуска для матрицы размера [math]8000 \times 8000[/math]:
$ mpicc qr.c -o _scratch/qr -L${MKLROOT}/lib/intel64 -lmkl_rt -lpthread -lm -ldl $ sbatch -n 1 -p test run _scratch/qr 8000
Оценивалось время вычисления собственных чисел произвольной квадратной матрицы для различных значений порядка матрицы (Matrix size) и числа потоков (Threads). Ввиду того, что количество операций зависит от числа итераций алгоритма, оценить производительность не удается.
Набор и границы значений изменяемых параметров запуска реализации алгоритма:
- число потоков [1 : 8];
- размер матрицы [2000 : 8000] с шагом 500.
На рисунке приведен график времени работы выбранной реализации QR-алгоритма в зависимости от изменяемых параметров запуска.
Из рисунка видно, что алгоритм хорошо масштабируется. Время выполнения в зависимости от размера задачи растет значительно быстрее при использовании одного потока по сравнению с использованиемм нескольких потоков. Увеличение числа потоков при фиксированном размере задачи приводит к уменьшению времени выполнения. Для матрицы размера [math]8000 \times 8000[/math] время работы однопоточной реализации более чем в два раза превосходит время работы параллельной.
Исходный код программы на языке C и скрипт для обработки результатов доступны на github.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- LAPACK (Fortran, C). Имеется реализация в Intel MKL:
- ?geev - нахождение собственных значений матрицы;
- ?gehrd - приведение к хессенберговой форме;
- ?hseqr - нахождение собственных значений матрицы в хессенберговой форме.
- ScaLAPACK (Fortran, C). Имеется реализация в Intel MKL:
- p?gehrd- приведение к хессенберговой форме;
- p?hseqr - нахождение собственных значений матрицы в хессенберговой форме.
- numpy.linalg.eigvals (Python) - использует ?geev из LAPACK.
- Eigen (C++).
- IBM ESSL (Fortran, C, C++).
3 Литература
- ↑ 1,0 1,1 Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. — 6-е изд. — М.: БИНОМ. Лаборатория знаний, 2008. — 636 с.
- ↑ 2,0 2,1 2,2 Тыртышников Е. Е. Методы численного анализа. — М.: Академия, 2007. — 320 c.
- ↑ Воеводин Вл., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин Вад. Практика суперкомпьютера «Ломоносов» // Открытые системы, 2012, N 7, С. 36-39.