Уровень алгоритма

Участник:Galkina/Метод Якоби вычисления собственных значений симметричной матрицы

Материал из Алговики
Перейти к навигации Перейти к поиску
Symbol confirmed.svgЭта работа успешно выполнена
Преподавателю: в основное пространство, в подстраницу

Данное задание было проверено и зачтено.
Проверено Frolov и ASA.



Метод Якоби вычисления собственных значений симметричной матрицы
Последовательный алгоритм
Последовательная сложность O(n^3)
Объём входных данных \frac{n (n + 1)}{2}
Объём выходных данных n
Параллельный алгоритм
Высота ярусно-параллельной формы O(n^2)
Ширина ярусно-параллельной формы O(n)


Авторы описания: А.С.Галкина (входные и выходные данные, математическое описание алгоритма и др.), И.А.Плахов (ресурс параллелизма алгоритма,последовательная сложность алгоритма и др.) Вклад авторов считать равноценным.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод Якоби — итерационный алгоритм для вычисления собственных значений и собственных векторов вещественной симметричной матрицы. Карл Густав Якоб Якоби, в честь которого назван этот метод, предложил его в 1846 году, хотя использоваться он начал только в 1950-х годах с появлением компьютеров. Суть алгоритма заключается в том, чтобы по заданной симметрической матрице A = A_0 построить последовательность ортогонально подобных матриц A_1,A_2,\dotsc,A_m, сходящуюся к диагональной матрице, на диагонали которой стоят собственные значения. Для построения этой последовательности применяется специально подобранная матрица поворота J_i, такая что норма наддиагональной части of\!f(A)=\sqrt{\sum\limits_{1 \le j \lt k \le n} a_{jk}^2} уменьшается при каждом повороте матрицы A. Вычисление останавливается, когда угол поворота становится близок к нулю, либо когда максимальный внедиагональный элемент становится меньше заранее выбранного порогового значения.

1.2 Математическое описание алгоритма

Исходные данные: симметрическая матрица A (элементы a_{ij}).

Вычисляемые данные: диагональная матрица \Lambda (элементы \lambda_{ij}).

Матрица A_{i+1} получается из A_i по формуле A_{i+1}={J_i}^TA_iJ_i, где J_i — ортогональная матрица, называемая вращением Якоби. При подходящем выборе J_i матрица A_m для больших m будет близка к диагональной матрице \Lambda.

Матрица J_i выбирается так, чтобы сделать нулями пару внедиагональных элементов матрицы A_{i+1} [1].


                                                 j                           k

J_i = \begin{matrix} \\ \\ \\ j \\ \\ k \\ \\ \\ \\ \end{matrix} \begin{bmatrix} & 1 & & & & & & & & \\ & & 1 & & & & & & & \\ & & & \ddots & & & & & & \\ & & & & \cos(\theta) & & -\sin(\theta) & & & \\ & & & & & \ddots & & & & \\ & & & & \sin(\theta) & & \cos(\theta) & & & \\ & & & & & & & \ddots & & \\ & & & & & & & & 1 & \\ & & & & & & & & & 1 \\ \end{bmatrix}

Обозначим s = \sin \theta и c = \cos \theta. Тогда матрица A_{i+1} состоит из следующих элементов:

\begin{align} a_{jj}^{(i+1)} &= c^2\, a_{jj}^{(i)} - 2\, s c \,a_{jk}^{(i)} + s^2\, a_{kk}^{(i)} \\ a_{kk}^{(i+1)} &= s^2 \,a_{jj}^{(i)} + 2 s c\, a_{jk}^{(i)} + c^2 \, a_{kk}^{(i)} \\ a_{jk}^{(i+1)} &= a_{kj}^{(i+1)} = (c^2 - s^2 ) \, a_{jk}^{(i)} + s c \, (a_{kk}^{(i)} - a_{jj}^{(i)} ) \\ a_{jm}^{(i+1)} &= a_{mj}^{(i+1)} = c \, a_{jm}^{(i)} - s \, a_{km}^{(i)} & m \ne j,k \\ a_{km}^{(i+1)} &= a_{mk}^{(i+1)} = s \, a_{jm}^{(i)} + c \, a_{km}^{(i)} & m \ne j,k \\ a_{ml}^{(i+1)} &= a_{ml}^{(i)} &m,l \ne j,k \end{align}

Можно выбрать \theta так, чтобы a_{jk}^{(i+1)} = 0 и a_{kj}^{(i+1)} = 0. Отсюда получим равенство

\frac{a_{jj}^{(i)} - a_{kk}^{(i)}}{2 a_{jk}^{(i)}} = \frac{c^2 - s^2}{2sc} = \frac{\cos (2\theta)}{\sin (2\theta)} = \operatorname{ctg}(2\theta) \equiv \tau .

Если a_{jj}^{(i)} = a_{kk}^{(i)}, то \theta = \frac{\pi}{4}.

Положим t = \frac{s}{c} = \operatorname{tg}(\theta) и заметим, что t^2 - 2t\tau + 1 = 0. Решая квадратное уравнение, находим t = \frac{\operatorname{sign}(\tau)}{|\tau| + \sqrt{1+\tau^2}}, c = \frac{1}{\sqrt{1+t^2}}, s = tc.

Выбор параметров j и k производится путем построчного циклического обхода внедиагональных элементов матрицы A.

1.3 Вычислительное ядро алгоритма

Рассматривая отдельную итерацию, можно считать, что вычислительное ядро составляют множественные вычисления элементов матрицы a_{jm}^{(i+1)} = a_{mj}^{(i+1)}   и   a_{km}^{(i+1)} = a_{mk}^{(i+1)},   m \ne j,k   в процессе применения матрицы поворота J_i к матрице A:

\begin{align} a_{jm}^{(i+1)} &= a_{mj}^{(i+1)} = c \, a_{jm}^{(i)} - s \, a_{km}^{(i)} & m \ne j,k \\ a_{km}^{(i+1)} &= a_{mk}^{(i+1)} = s \, a_{jm}^{(i)} + c \, a_{km}^{(i)} & m \ne j,k, \end{align}

каждое из которых повторяется по (n-2) раза, а также вычисление элементов a_{jj}^{(i+1)}   и   a_{kk}^{(i+1)} :

\begin{align} a_{jj}^{(i+1)} &= c^2\, a_{jj}^{(i)} - 2\, s c \,a_{jk}^{(i)} + s^2\, a_{kk}^{(i)} \\ a_{kk}^{(i+1)} &= s^2 \,a_{jj}^{(i)} + 2 s c\, a_{jk}^{(i)} + c^2 \, a_{kk}^{(i)} \end{align}

1.4 Макроструктура алгоритма

Основную часть метода составляет процедура применения вращения к матрице A, которая в дальнейшем будет обозначена как Jakobi-Rotation(A,j,k).

Эту процедуру, в свою очередь, можно разделить на две логические части:

  1. Определение угла поворота \theta по элементам матрицы a_{jj}, a_{kk} и a_{jk};
  2. Поворот матрицы A (изменяются лишь строки и столбцы, соответствующие индексам j и  k).

1.5 Схема реализации последовательного алгоритма

Алгоритм можно описать следующим образом [1]:

1. Выбрать пару индексов j,k
2. Обратиться к процедуре Jakobi-Rotation[math](A,j,k)[/math]
Если [math]A[/math] не достаточно близка к диагональной матрице, перейти к шагу 1.

Существует несколько способов выбора пары j,k. Наиболее простой и быстрый способ — построчный циклический обход внедиагональных элементов матрицы A:

repeat
    for [math]j=1[/math] to [math]n-1[/math]
        for [math]k=j+1[/math] to [math]n[/math]
            выполнить процедуру Jakobi-Rotation[math](A,j,k)[/math]
        end for
    end for
пока [math]A[/math] не достаточно близка к диагональной матрице

Процедура Jakobi-Rotation(A,j,k) — это следующий алгоритм:

Если [math]|a_{jk}|[/math] достаточно мал, вычисление заканчивается. В противном случае выполняются следующие действия:
     1. Если  [math]a_{jj}==a_{kk}[/math], то угол [math]\theta=\frac{\pi}{4}[/math].
        В остальных случаях находим параметры [math]\tau,\ t,\ c,\ s[/math]:
          [math]\begin{align}
           \tau &= \frac{a_{jj}-a_{kk}}{2\,a_{jk}} \\
           t &= \frac{sign(\tau)}{|\tau|+\sqrt{1+\tau^2}} \\
           c &= \frac{1}{\sqrt{1+t^2}} \\
           s &= c\,t
           \end{align}[/math]
     2. Выполняется поворот матрицы (изменяются лишь строки и столбцы, соответствующие индексам [math]i[/math] и [math]j[/math]):
          [math]A = R^T(j,k,\theta)\cdot A\cdot R(j,k,\theta), \qquad J_i = R(j,k,\theta),\ c = \cos \theta,\ s = \sin \theta [/math]

1.6 Последовательная сложность алгоритма

Для осуществления одной итерации метода Якоби для матрицы размера (n\times n) требуется выполнить:

Для вычислительного ядра —

  • 4n+4 умножений,
  • 2n+2 сложений.

Для остальной части алгоритма —

  • 3 умножения,
  • 3 деления,
  • 5 сложений (вычитаний),
  • 2 извлечения квадратного корня.

Умножения и сложения (вычитания) составляют основную часть алгоритма.

Так как выбор индексов j и k осуществляется путем перебора внедиагональных элементов матрицы, для полного прохода потребуется \frac{n(n-1)}{2} итераций.

Таким образом, при классификации по последовательной сложности метод Якоби вычисления собственных значений симметричной матрицы относится к алгоритмам с кубической сложностью.

1.7 Информационный граф

Граф алгоритма состоит из трёх групп вершин.

Первой группе вершин (J) соответствует вычисление значений c и s.

Второй группе вершин (А) соответствует вычисление значений элементов a_{jm}^{(i+1)} = a_{mj}^{(i+1)}   и   a_{km}^{(i+1)} = a_{mk}^{(i+1)},   m \ne j,k.

Третьей группе вершин (B) соответствует вычисление значений элементов a_{jj}^{(i+1)}   и   a_{kk}^{(i+1)} .


Рисунок 1. Граф одной итерации алгоритма без отображения входных и выходных данных.
Рисунок 2. Внутренний граф вершин J с входными параметрами x = a_{jj}^{(i)}, y = a_{kk}^{(i)}, z = a_{jk}^{(i)}.

1.8 Ресурс параллелизма алгоритма

Для выполнения одной итерации требуется последовательно выполнить следующие действия:

  1. вычислить \tau (2 операции сложения, 1 операция деления)
  2. вычислить t (1 операция сравнения, 1 операция взятия модуля, 2 операции сложения, 1 операция умножения, 1 операция деления, 1 операция извлечения квадратного корня)
  3. вычислить c (1 операция сложения, 1 операция умножения, 1 операция деления, 1 операция извлечения квадратного корня) и s (1 операция умножения)

После этого выполняется ярус, отвечающий за применение поворота к матрице A с параллельным выполнением 2(n-2) операций вычисления элементов матрицы a_{jm}^{(i+1)} = a_{mj}^{(i+1)}   и   a_{km}^{(i+1)} = a_{mk}^{(i+1)},   m \ne j,k , а также 2 операций вычисления элементов a_{jj}^{(i+1)}   и   a_{kk}^{(i+1)} . Наибольшее количество операций содержится в вычислении последних двух элементов (по 6 умножений и 3 сложения).

Суммарное количество итераций зависит от входных данных и заданного значения погрешности. Один "цикл" (полный проход по внедиагональным элементам) осуществляется за N = \frac{n(n-1)}{2} итераций. Асимптотически метод сходится квадратично [2]. Как правило, для сходимости метода Якоби требуется от 5 до 10 циклов, что хуже, чем у конкурирующих алгоритмов [1].

Таким образом, при классификации по высоте ЯПФ метод Якоби относится к алгоритмам со сложностью O(n^2) , а при классификации по ширине ЯПФ — к алгоритмам со сложностью O(n).

1.9 Входные и выходные данные алгоритма

Входные данные: матрица A (элементы a_{ij}). Дополнительные ограничения:

  • A – симметрическая матрица, т. е. a_{ij}= a_{ji}, i, j = 1, \ldots, n.

Объём входных данных: \frac{n (n + 1)}{2} (в силу симметричности достаточно хранить только диагональ и над/поддиагональные элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом.

Выходные данные: вектор собственных значений \Lambda (элементы \lambda_{ii}).

Объём выходных данных: n .

1.10 Свойства алгоритма

Метод Якоби является самым медленным из имеющихся алгоритмов вычисления собственных значений симметричной матрицы. Тем не менее, он способен вычислять малые собственные числа и отвечающие им собственные векторы с гораздо большей точностью, чем другие методы [1]. Кроме того, он не предполагает первоначального приведения матрицы к трехдиагональной форме.

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов для метода Якоби является линейным.

Вычислительная мощность алгоритма линейна.

Метод Якоби не детерминирован, так как является итерационным алгоритмом с выходом по точности: число итераций зависит от входных данных и порогового значения.

Дуги информационного графа, исходящие из вершин, соответствующих вычислениям значений c и s, образуют пучки рассылок линейной мощности.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

Исследование масштабируемости проводилось на суперкомпьютере "Ломоносов" Суперкомпьютерного комплекса Московского Государственного Университета имени М.В. Ломоносова. Алгоритм реализован на языке C++ с использованием средств MPI. Компиляция производилась с помощью команды mpicxx с использованием компилятора Intel с OpenMPI и библиотеки MKL. Были подключены следующие модули: openmpi/1.5.5-icc, intel/13.1.0, mkl/4.0.2.146. Программа была запущена в очередях test и regular4.

Значения изменяемых параметров запуска реализации алгоритма:

  • число процессов: 2, 4, 8, 16, 32, 64;
  • число элементов в матрице: 900, 3600, 8100, 14400, 22500, 32400, 44100, 57600, 72900, 90000.

На следующих рисунках приведены графики времени выполнения и производительности выбранной реализации алгоритма в зависимости от изменяемых параметров запуска

Рисунок 3. Изменение времени выполнения в зависимости от числа процессов и размера входной матрицы
Рисунок 4. Изменение производительности в зависимости от числа процессов и размера входной матрицы

На Рис.4 видно, что при увеличении количества процессов производительность сначала увеличивается, а затем уменьшается. Время работы алгоритма резко увеличивается при увеличении размеров матрицы, что обусловлено большим количеством сообщений, обрабатываемых корневым процессом. Полученные результаты говорят о плохой масштабируемости алгоритма.

Реализация алгоритма доступна по ссылке.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Существует библиотека JACOBI_EIGENVALUE, реализующая последовательный вариант метода Якоби на языках программирования С, С++, FORTRAN77, FORTRAN90, MATLAB, Python. Данная библиотека распространяется по лицензии GNU LESSER GENERAL PUBLIC LICENSE.

Существует также параллельная реализация метода на платформе CUDA.

3 Литература

<references \>

  1. Перейти обратно: 1,0 1,1 1,2 1,3 Деммель Дж. Вычислительная линейная алгебра. - М.: МИР, 2001 - С. 244-248
  2. Wilkinson J. H. The Algebraic Eigenvalue Problem // Oxford University Press, UK, 1965, P. 270