Участник:Vika3410/Метод Разделяй и властвуй: различия между версиями
IgorS (обсуждение | вклад) |
|||
(не показаны 53 промежуточные версии 4 участников) | |||
Строка 1: | Строка 1: | ||
− | {{Assignment}} | + | {{Assignment|IgorS}} |
− | Авторы статьи: [[Участник:NikoSergAlex|Сергеев Никита]] (группа 614) (1.1, 1.2, 1.5, 1.6, 1.7, 1. | + | |
+ | Авторы статьи: [[Участник:NikoSergAlex|Сергеев Никита]] (группа 614) (1.1, 1.2, 1.5, 1.6, 1.7, 1.8, 1.10, 2.4), [[Участница:Vika3410|Стрельцова Виктория]] (группа 614) (1.2, 1.3, 1.4, 1.6, 1.7, 1.9, 1.10, 2.4) | ||
{{algorithm | {{algorithm | ||
| name = Метод "Разделяй и властвуй" вычисления собственных значений и векторов трёхдиагональной матрицы | | name = Метод "Разделяй и властвуй" вычисления собственных значений и векторов трёхдиагональной матрицы | ||
Строка 8: | Строка 9: | ||
крайне редко: <math> O(n^{2}) </math> | крайне редко: <math> O(n^{2}) </math> | ||
| pf_width = | | pf_width = | ||
− | | input_data = | + | | input_data = <math> 2n + 1 </math> |
− | | output_data = | + | | output_data = <math> n(n + 1) </math> |
}} | }} | ||
Строка 16: | Строка 17: | ||
== Общее описание алгоритма == | == Общее описание алгоритма == | ||
− | '''Метод разделяй и властвуй вычисления собственных значений и векторов трёхдиагональной матрицы''' - является наиболее быстрым из существующих методов вычисления всех собственных значений и собственных векторов трехдиагональной матрицы, начиная с порядка n, который примерно равен 26. (Точное значение этого порогового порядка в конкретном случае зависит от компьютера.) Численно устойчивая реализация данного метода весьма не тривиальна, так как не смотря на то, что впервые метод был предложен в 1981 г., "правильный" способ реализации метода был найден лишь в 1992 г. Этот способ был воплощен при помощи LAPACK-программ ssyevd (для плотных матриц) и sstevd (для трехдиагональных матриц). В этих программах стратегия "разделяй-и-влавствуй" используется для матриц порядка выше 25. Для матриц порядка ниже 25 (или в тех случаях, когда требуются только собственные значения) автоматически происходит переход к методу QR-итерации. | + | '''Метод разделяй и властвуй вычисления собственных значений и векторов трёхдиагональной матрицы''' - является наиболее быстрым из существующих методов вычисления всех собственных значений и собственных векторов трехдиагональной матрицы, начиная с порядка n, который примерно равен 26. (Точное значение этого порогового порядка в конкретном случае зависит от компьютера.) |
+ | |||
+ | Численно устойчивая реализация данного метода весьма не тривиальна, так как не смотря на то, что впервые метод был предложен в 1981 г., "правильный" способ реализации метода был найден лишь в 1992 г. Этот способ был воплощен при помощи LAPACK-программ ssyevd (для плотных матриц) и sstevd (для трехдиагональных матриц). В этих программах стратегия "разделяй-и-влавствуй" используется для матриц порядка выше 25. | ||
+ | |||
+ | Для матриц порядка ниже 25 (или в тех случаях, когда требуются только собственные значения) автоматически происходит переход к методу QR-итерации. | ||
== Математическое описание алгоритма == | == Математическое описание алгоритма == | ||
Строка 59: | Строка 64: | ||
</math> | </math> | ||
− | + | В предположении, что известны спектральные разложения матриц <math>T_{1}</math> и <math>T_{2}</math>: | |
− | <math>T_{i}=Q_{i} \Lambda_{i} Q_{i}^{T} </math>. | + | <math>T_{i}=Q_{i} \Lambda_{i} Q_{i}^{T} </math>. На самом деле, они будут вычисляться рекурсивно тем же самым алгоритмом. |
− | + | Можно установить связь между собственными значениями матрицы Т и собственными значениями матриц | |
− | <math>T_{1}</math> и <math>T_{2}</math>. | + | <math>T_{1}</math> и <math>T_{2}</math>. Получается: |
<math> | <math> | ||
Строка 72: | Строка 77: | ||
где <math> u = \begin{bmatrix} Q_{1}^{T} & 0 \\ 0 & Q_{2}^{T}\end{bmatrix}v </math> - матрица, в первой строке которой находятся элементы последнего столбца матрицы <math> Q_{1}^{T}</math>, а во второй - элементы первого столбца матрицы <math> Q_{2}^{T}</math>, так как <math>v = \begin{bmatrix} 0 , \ldots , 0 , 1 , 1 , 0 \ldots , 0 \end{bmatrix}^T</math>. | где <math> u = \begin{bmatrix} Q_{1}^{T} & 0 \\ 0 & Q_{2}^{T}\end{bmatrix}v </math> - матрица, в первой строке которой находятся элементы последнего столбца матрицы <math> Q_{1}^{T}</math>, а во второй - элементы первого столбца матрицы <math> Q_{2}^{T}</math>, так как <math>v = \begin{bmatrix} 0 , \ldots , 0 , 1 , 1 , 0 \ldots , 0 \end{bmatrix}^T</math>. | ||
− | Следовательно, <math>T</math> имеет | + | Следовательно, <math>T</math> имеет такие же собственные значения, что и подобная ей матрица <math>D + \rho uu^{T}</math>, |
где <math>D = \begin{bmatrix} L_{1} & 0 \\ 0 & L_{2}\end{bmatrix}</math> - диагональная матрица, | где <math>D = \begin{bmatrix} L_{1} & 0 \\ 0 & L_{2}\end{bmatrix}</math> - диагональная матрица, | ||
<math>\rho = b_{m}</math> - число, а <math>u</math> - вектор. | <math>\rho = b_{m}</math> - число, а <math>u</math> - вектор. | ||
− | + | В дальнейшем предполагаем, не ограничивая общности, что диагональные элементы <math>d_{1}, \ldots, d_{n}</math> матрицы <math>D</math> упорядочены по не возрастанию: <math>d_{n} <= \ldots <=d_{1}</math>. | |
− | + | Для того, чтобы найти собственные значения матрицы <math>D + \rho uu^{T}</math>, потребуется вычислить её характеристический многочлен, считая пока матрицу <math>D - \lambda I</math> невырожденной. | |
− | Тогда | + | Тогда получаем |
<math>det(D + \rho uu^{T} - \lambda I) = det((D - \lambda I)(I + \rho (D- \lambda I)^{-1} uu^{T}))</math>. | <math>det(D + \rho uu^{T} - \lambda I) = det((D - \lambda I)(I + \rho (D- \lambda I)^{-1} uu^{T}))</math>. | ||
− | + | Так как <math>D - \lambda I</math> невырожденная, <math>det(I + \rho (D - \lambda I)^{-1}uu^{T}) = 0</math> тогда и только тогда, когда <math>\lambda</math> - является собственным значением. Можем заметить, что матрица <math>I + \rho (D - \lambda I)^{-1}uu^{T}</math> получается из единичной путём добавления матрицы ранга 1. Определитель такой матрицы не сложно вычислить. | |
''Лемма 1.'' Справедливо равенство <math>det(I + xy^{T}) = 1 + y^{T}x</math>, где <math>x</math> и <math>y</math> - векторы. | ''Лемма 1.'' Справедливо равенство <math>det(I + xy^{T}) = 1 + y^{T}x</math>, где <math>x</math> и <math>y</math> - векторы. | ||
− | + | Следовательно, получаем | |
<math>det(I + \rho (D - \lambda I)^{-1}uu^{T}) = 1 + \rho u^{T}(D - \lambda I)^{-1}u</math> <math> = 1 + \rho \sum_{i=1, n} \frac{u_{i}^{2}} {d_{i}-\lambda} \equiv f(\lambda)</math> , | <math>det(I + \rho (D - \lambda I)^{-1}uu^{T}) = 1 + \rho u^{T}(D - \lambda I)^{-1}u</math> <math> = 1 + \rho \sum_{i=1, n} \frac{u_{i}^{2}} {d_{i}-\lambda} \equiv f(\lambda)</math> , | ||
− | т.е. собственные значения матрицы <math>T</math> | + | т.е. собственные значения матрицы <math>T</math> являются корнями так называемого векового уравнения <math>f(\lambda) = 0</math>. Если все числа <math>d_{i}</math> различны между собой и все <math>u_{i} <> 0</math> (случай общего положения), то <math>f(\lambda)</math> имеет график типа, который показан на рис.1(где <math>n = 4</math> и <math>\rho > 0</math>). |
[[File:Сергеев 1.jpg|thumb|center|800px|Рис. 1. График функции <math> f(\lambda) = 1 + \frac{0.5}{1 - \lambda} + \frac{0.5}{2 - \lambda} + \frac{0.5}{3 - \lambda} + \frac{0.5}{4 - \lambda}</math>]] | [[File:Сергеев 1.jpg|thumb|center|800px|Рис. 1. График функции <math> f(\lambda) = 1 + \frac{0.5}{1 - \lambda} + \frac{0.5}{2 - \lambda} + \frac{0.5}{3 - \lambda} + \frac{0.5}{4 - \lambda}</math>]] | ||
− | + | По рисунку можно заметить, что прямая <math>y = 1</math> является горизонтальной асимптотой для данного графика, а прямые <math>\lambda = d_{i}</math> есть вертикальные асимптоты. Так как <math>f^{'}(\lambda) = \rho \sum_{i=1, n} \frac{u_{i}^{2}} {(d_{i}-\lambda)^{2}}> 0 </math>, функция возрастает всюду, кроме точек <math>\lambda = d_{i}</math>. Из этого следует, что корни функции разделяются числами <math>d_{i}</math> и ещё один корень находится справа от точки <math>d_{1}</math> (на рис. 1 <math>d_{1} = 4</math>). (При <math>\rho<0</math> функция <math>f(\lambda)</math> всюду убывает и соответствующий корень будет находиться слева от точки <math>d_{n}</math>). Для функции <math>f(\lambda)</math>, которая является монотонной и гладкой на каждом из интервалов <math>(d_{i+1},d_{i})</math>, можно найти вариант метода Ньютона, который будет быстро и монотонно сходиться к каждому из корней, при условии, что начальная точка взята в <math>(d_{i+1},d_{i})</math>. Нам достаточно знать тот факт, что на практике метод сходится к каждому собственному значению за строго ограниченное число шагов. Поскольку вычисление <math>f(\lambda)</math> и <math>f^{'}(\lambda)</math> стоит <math>O(n)</math> флопов, для вычисления одного собственного значения достаточно <math>O(n)</math> флопов, следовательно для вычисления всех <math>n</math> собственных значений матрицы <math>D + \rho uu^{T}</math> потребуется <math>O(n^{2})</math> флопов. | |
Для собственных векторов матрицы <math>D + \rho uu^{T}</math> мы легко можем получить явные выражения. | Для собственных векторов матрицы <math>D + \rho uu^{T}</math> мы легко можем получить явные выражения. | ||
Строка 98: | Строка 103: | ||
Доказательство. | Доказательство. | ||
+ | <math>(D + \rho uu^{T})[(D - \alpha I)^{-1}u] = | ||
− | + | (D - \alpha I + \alpha I + \rho uu^{T})(D - \alpha I)^{-1}u = | |
− | |||
− | + | u + \alpha (D - \alpha I)^{-1}u + u[\rho u^{T}(D - \alpha I)^{-1}u]= </math> | |
− | + | <math> = u + \alpha(D - \alpha I)^{-1}u - u = \alpha [(D - \alpha I)^{-1}u]</math>, | |
+ | |||
+ | поскольку | ||
+ | |||
+ | <math> \rho u^{T}(D - \alpha I)^{-1}u + 1 = f(\alpha) = 0 </math>. | ||
− | + | Что и требовалось доказать. | |
− | + | Получается, что для вычисления по этой простой формуле всех <math>n</math> собственных векторов потребуется <math>O(n^{2})</math> флопов. К сожалению, данная формула не обеспечивает нам численной устойчивости, так как для двух очень близких значений <math>\alpha_{i}</math> может давать неортогональные приближенные собственные векторы <math>u_{i}</math>. Учёным потребовалось целое десятилетие для того, чтобы найти устойчивую альтернативу исходному описанию алгоритма. Подробнее детали будут обсуждаться ниже в данном разделе. | |
− | + | Алгоритм является рекурсивным. | |
− | + | До сих пор полагалось, что все <math>d_{i}</math> различны и все <math>u_{i}</math> отличны от нуля. Если это будет не так, то вековое уравнение <math>f(\lambda)=0</math> имеет <math>k</math> вертикальных асимптот, где <math>k<n</math>, а следовательно <math>k</math> корней. Однако оказывается, что остальные <math>n - k</math> собственных значений могут быть определены без каких-либо усилий: в случае, если <math>d_{i}=d_{i+1}</math> или <math>u_{i}=0</math>, легко показать, что <math>d_{i}</math> является собственным значением и для матрицы <math>D + \rho uu^{T}</math>. В такой ситуации мы говорим о '''дефляции'''. На практике выбирается некоторое пороговое значение и дефляция для числа <math>d_{i}</math> регистрируется, в том случает, если в смысле этого порога <math>d_{i}</math> достаточно близко к <math>d_{i+1}</math> либо <math>u_{i}</math> достаточно мало. | |
− | |||
− | |||
− | + | Основной выигрыш от использования дефляции состоит не в том, что убыстряется решение векового уравнения - этот этап в любом случае стоит лишь <math>O(n^{2})</math> операций. Выигрыш заключается в ускорении матричного умножения на последнем шаге алгоритма. Действительно, если <math>u_{i}=0</math>, то соответствующий собственный вектор есть i-й столбец <math>e_{i}</math> единичной матрицы. Это означает, что <math>e_{i}</math> является i-м столбцом в матрице <math>Q_{'}</math>, следовательно при формировании матрицы <math>Q</math> применяя левое умножение <math>Q_{1}</math> на <math>Q_{2}</math> вычисление i-го столбца не будет требовать никаких затрат. Аналогичное упрощение возможно в случае <math>d_{i} = d_{i+1}</math>. При дефляции многих собственных значений устраняется большая часть работы, которая связана с матричным умножением. | |
− | |||
− | + | Далее пойдет речь о решении '''векового уравнения''', которое является одной из основных частей алгоритма. | |
− | |||
Предположим, что некоторое <math>u_{i}</math>, хотя и мало, все же недостаточно мало для того, чтобы была зарегистрирована дефляция. В этом случае применение метода Ньютона к решению векового уравнения встречается с затруднениями. Вспомним, что пересчет приближённого решения <math>u_{j}</math> уравнения <math>f(\lambda) = 0</math> в методе Ньютона основан на следующих положениях: | Предположим, что некоторое <math>u_{i}</math>, хотя и мало, все же недостаточно мало для того, чтобы была зарегистрирована дефляция. В этом случае применение метода Ньютона к решению векового уравнения встречается с затруднениями. Вспомним, что пересчет приближённого решения <math>u_{j}</math> уравнения <math>f(\lambda) = 0</math> в методе Ньютона основан на следующих положениях: | ||
Строка 154: | Строка 159: | ||
Наконец, полагаем | Наконец, полагаем | ||
<math>h(\lambda) = 1 + h_{1}(\lambda) + h_{2}(\lambda) = (1 + \hat{c_{1}} + \hat{c_{2}} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda} \equiv c_{3} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda}</math>. | <math>h(\lambda) = 1 + h_{1}(\lambda) + h_{2}(\lambda) = (1 + \hat{c_{1}} + \hat{c_{2}} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda} \equiv c_{3} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda}</math>. | ||
+ | |||
+ | == Вычислительное ядро алгоритма == | ||
+ | Вычислительным ядром последовательной схемы решения будет являться вычисление матрицы <math>Q</math> собственных векторов при помощи умножения матрицы <math>Q = \begin{bmatrix} Q_{1} & 0 \\ 0 & Q_{2}\end{bmatrix}</math> на матрицу <math>Q^{'}</math>. Эта операция имеет сложность <math>cn^{3}</math> о чём будет говориться ниже, в разделе [[#Последовательная сложность алгоритма]] . | ||
+ | |||
+ | Данной операции предшествует вычисление собственных значений и векторов матрицы <math> D + \rho uu^{T}</math>. | ||
+ | |||
+ | == Макроструктура алгоритма == | ||
+ | В разделе [[#Информационный граф]] описана структура алгоритма, в которой есть блок умножения матриц для вычисления собственных векторов, являющийся вычислительным ядром алгоритма. В соответствующем разделе ([[#Вычислительное ядро алгоритма]]) мы упоминали о том, что данному блоку предшествует вычисление собственных значений, которое производится [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0 методом Ньютона]. | ||
== Схема реализации последовательного алгоритма == | == Схема реализации последовательного алгоритма == | ||
− | + | Рассмотрим каким именно образом происходит вычисление собственных значений и собственных векторов симметричной трехдиагональной матрицы при помощи стратегии "разделяй и властвуй": | |
''proc dc_eig''<math>(T,Q,\Lambda)...</math> по входной матрице <math>T</math> вычисляются выходные матрицы <math>Q</math> и <math>\Lambda</math>, такие, что <math>T = Q\Lambda Q^{T}</math> | ''proc dc_eig''<math>(T,Q,\Lambda)...</math> по входной матрице <math>T</math> вычисляются выходные матрицы <math>Q</math> и <math>\Lambda</math>, такие, что <math>T = Q\Lambda Q^{T}</math> | ||
− | + | В случае, '''если''' <math>T</math> - матрица размера <math>1</math> x <math>1</math> : | |
1. Присвоить выходным параметрам значения <math> Q = 1, \Lambda = T</math> | 1. Присвоить выходным параметрам значения <math> Q = 1, \Lambda = T</math> | ||
− | Иначе: | + | '''Иначе''': |
1. Представить <math>T</math> в виде <math> T = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m}vv^{T} </math> | 1. Представить <math>T</math> в виде <math> T = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m}vv^{T} </math> | ||
Строка 182: | Строка 195: | ||
8. Присвоить выходным параметрам значения <math>Q</math> и <math>\Lambda</math> | 8. Присвоить выходным параметрам значения <math>Q</math> и <math>\Lambda</math> | ||
− | ''endif'' | + | '''endif''' |
== Последовательная сложность алгоритма == | == Последовательная сложность алгоритма == | ||
− | + | Рассмотрим сложность алгоритма. Пусть <math>t(n)</math> - число флопов, которое потребуется при обработке матрицы размера <math> n * | |
− | n</math> процедурой ''dc_eig''. | + | n</math> процедурой ''dc_eig''. В таком случае |
<math> t(n) = 2t(n/2) </math> два рекурсивных обращения к ''dc_eig''<math>(T_{i},Q_{i},\Lambda_{i})</math> | <math> t(n) = 2t(n/2) </math> два рекурсивных обращения к ''dc_eig''<math>(T_{i},Q_{i},\Lambda_{i})</math> | ||
Строка 194: | Строка 207: | ||
− | Если <math> Q_{1}, Q_{2}</math> и <math>Q^{'}</math> | + | Если <math> Q_{1}, Q_{2}</math> и <math>Q^{'}</math> рассматривать как плотные матрицы и использовать стандартный алгоритм матричного умножения, то константа <math> c </math> в последней строке будет равна 1. Следовательно, именно это умножение и будет составлять наиболее трудоёмкую часть алгоритма в целом. Игнорируя члены порядка <math>n^{2}</math>, получаем <math>t(n) = 2t(n/2) + cn^{3}</math>. Решив это разностное уравнение, находим <math> t \approx c\frac{4}{3}n^{3} </math> |
− | На практике константа <math>c</math> обычно гораздо меньше 1, | + | На практике константа <math>c</math> обычно оказывается гораздо меньше 1, так как матрица <math>Q^{'}</math> весьма разрежена вследствие явления, которое называется дефляцией, и которое было описано выше. |
== Информационный граф == | == Информационный граф == | ||
− | На рисунке 3 изображена структура | + | На рисунке 3 изображена структура алгоритма. |
− | [[File: | + | |
+ | [[File:Sergeev_5.png|thumb|center|left|1000px|Рис. 3. Дерево алгоритма "Разделяй и властвуй"]] | ||
+ | |||
+ | |||
+ | Операции: | ||
+ | |||
+ | <math>D</math> - операция Divide разделения матрицы <math> T </math> на матрицы <math>T_{1}</math> и <math>T_{2}</math> | ||
+ | |||
+ | Индексы - размерность | ||
+ | |||
+ | <math>S_{k}</math> - операция Conquer сбора матрицы <math> D </math> | ||
+ | |||
+ | <math> L_{k} </math> - операция поиска собственных значений | ||
+ | |||
+ | <math> S^{'} </math> - операция поиска собственных векторов матрицы <math> Q^{'} </math> | ||
− | + | <math> S </math> - операция поиска собственных векторов матрицы <math> Q </math> | |
== Ресурс параллелизма алгоритма == | == Ресурс параллелизма алгоритма == | ||
− | + | В структуре алгоритма имеем два параллельных блока - вызов рекурсивных функций ''dc_eig'' для вычисления собственных значений и векторов матриц <math>T_{1}</math> и <math>T_{2}</math> - это единственная часть алгоритма, в которой возможно использовать параллелизм. | |
+ | |||
+ | Рекурсивное разделение матрицы ведёт к иерархии вычислительных подблоков с графом зависимости данных, который принимает вид двоичного дерева. Такая структура является естественным путем разделения вычислений между процессорами. | ||
+ | |||
+ | - В вершине дерева все процессы взаимодействуют. | ||
+ | |||
+ | - В каждой ветви дерева вычисление делится на два вычислительных подблока, внутри каждого из которых процессы параллельно взаимодействуют. | ||
+ | |||
+ | - В листьях деревьев каждый процесс занимается вычислением независимо. | ||
+ | |||
+ | В случае реализации без параллелизма, функции ''dc_eig'' отрабатывают последовательно - сначала со входными параметрами <math>T_{1}, Q_{1}, \Lambda_{1}</math>, затем - <math>T_{2}, Q_{2}, \Lambda_{2}</math>. | ||
+ | |||
+ | Таким образом, благодаря параллелизму высота алгоритма параллельного составляет <math>log_{2}(n)</math>, тогда как при последовательной реализации высота алгоритма равна сумме геометрической прогрессии <math>1+2+4+8+...+2^{n-1} = 2^{n} - 1</math>, что значительно сокращает число итераций алгоритма. | ||
+ | |||
+ | Поскольку функции являются рекурсивными, их параллельный вызов даст значительный выигрыш во времени. | ||
+ | |||
+ | При размерности матрицы больше 3 параллельная реализация позволяет сократить количество этапов работы алгоритма больше, чем в два раза. | ||
== Входные и выходные данные алгоритма == | == Входные и выходные данные алгоритма == | ||
− | + | '''Входные данные''': трёхдиагональная симметрическая матрица, описанная в разделе [[#Математическое описание алгоритма]]. | |
+ | |||
+ | <math> | ||
+ | L = \begin{bmatrix} | ||
+ | a_{1} & b_{1}&&&&& \\ | ||
+ | b_{1} & \ddots & \ddots \\ | ||
+ | & \ddots & a_{m-1} & b_{m-1} \\ | ||
+ | && b_{m-1} & a_{m} & b_{m} \\ | ||
+ | &&& b_{m} & a_{m+1} & b_{m+1} \\ | ||
+ | &&&& b_{m+1} & \ddots \\ | ||
+ | &&&&&& \ddots & b_{n-1} \\ | ||
+ | &&&&&& b_{n-1} & a_{n} \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | '''Объём входных данных''': <math> 2n + 1 </math> (в силу симметричности достаточно хранить только диагональ и над/под диагональные элементы). | ||
− | + | '''Выходные данные''': Вектор собственных значений длины <math> n </math> и <math> n </math> собственных векторов длины <math> n </math> , соответствующих собственным значениям исходной матрицы. | |
+ | |||
+ | '''Объём выходных данных''': <math>n(n + 1) </math> | ||
== Свойства алгоритма == | == Свойства алгоритма == | ||
− | Данный алгоритм является самым быстрым алгоритмом среди существующих: Разделяй и властвуй, QR, Бисекция и обратная итерация | + | Данный алгоритм является самым быстрым алгоритмом среди существующих: Разделяй и властвуй, QR, Бисекция и обратная итерация. |
− | |||
− | + | '''Последовательная сложность данного алгоритма:''' <math> t = c\frac{4}{3}n^{3} </math> | |
− | Особенности алгоритма: | + | Она удовлетворяет соотношению <math>t(n) = n^3 +2t(\frac{n}{2})</math> |
+ | |||
+ | '''Параллельная сложность алгоритма (за счет дефляции):''' <math> O(n^{2.3})</math>; в крайне редких случаях: <math> O(n^{2}) </math>. | ||
+ | |||
+ | '''Особенности алгоритма:''' | ||
1. Дефляция ([[#Дефляция]]) | 1. Дефляция ([[#Дефляция]]) | ||
Строка 234: | Строка 297: | ||
== Возможные способы и особенности параллельной реализации алгоритма == | == Возможные способы и особенности параллельной реализации алгоритма == | ||
== Масштабируемость алгоритма и его реализации == | == Масштабируемость алгоритма и его реализации == | ||
− | + | Тестирование реализации алгоритма проводилось на суперкомпьютере "Ломоносов" с использованием 1, 2, 4, 8, 16 процессоров на матрицах размера от 4 до 4096. Реализация произведена на библиотеке OpenMP. | |
+ | |||
+ | Общая эффективность программы увеличивается при увеличении числа процессоров (за счет сокращения времени работы программы) и уменьшается при увеличении размера матрицы (за счет увеличения времени обработки входных данных). При одновременном увеличении числа процессоров и размерности матрицы общая эффективность падает. | ||
+ | |||
+ | Ниже приведена схема зависимости времени работы программы от размера матрицы при разном числе процессоров. При размере матрицы от 4 до 1024 время работы очень мало, поэтому эти данные не указаны на схеме. | ||
+ | |||
+ | [[File:DivAndConq11.png|thumb|center|left|1000px|Рис. 4. Зависимость времени работы от размера матрицы]] | ||
+ | |||
+ | Параметры компиляции и запуска: | ||
+ | |||
+ | ssh compiler | ||
+ | module add slurm | ||
+ | module add openmpi/1.5.5-icc | ||
+ | g++ _scratch/DivideAndConquer.c++ -fopenmp -std=c++0x -o DC | ||
+ | sbatch -p test -n1 run ./DC | ||
+ | |||
+ | Код реализации: https://drive.google.com/open?id=0B0G2UV7cuLwHQk9xd1lyeDNJOXc | ||
== Динамические характеристики и эффективность реализации алгоритма == | == Динамические характеристики и эффективность реализации алгоритма == | ||
Строка 244: | Строка 323: | ||
= Литература = | = Литература = | ||
− | |||
− | [2] [http://www.netlib.org/ | + | [1] Дж. Деммель, «Вычислительная линейная алгебра» //С. 230-235 |
+ | |||
+ | [2] [http://www.cscamm.umd.edu/tadmor/pub/linear-stability/Gill_Tadmor_SISC90.pdf Doron Grill and Eitan Tadmor AN <math>O(N2)</math> METHOD FOR COMPUTING THE EIGENSYSTEM OF <math>N</math>x<math>N</math> SYMMETRIC TRIDIAGONAL MATRICES BY THE DIVIDE AND CONQUER APPROACH] | ||
+ | |||
+ | [3] [http://www.netlib.org/utk/people/JackDongarra/PAPERS/104_1999_a-parallel-divide-and-conquer-algorithm.pdf Francoise Tisseury, Jack Dongarra, A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures] | ||
− | [ | + | [4] [http://www.netlib.org/lapack/lawnspdf/lawn132.pdf Francoise Tisseury, Jack Dongarra, Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal Eigenvalue Problem on Distributed Memory Architectures] |
+ | [5] [https://en.wikipedia.org/wiki/Divide-and-conquer_eigenvalue_algorithm Алгоритм "Разделяй и властвуй" - Wikipedia] | ||
[[en:Description of algorithm properties and structure]] | [[en:Description of algorithm properties and structure]] |
Текущая версия на 13:28, 9 января 2017
Эта работа прошла предварительную проверку Дата последней правки страницы: 09.01.2017 Данная работа соответствует формальным критериям. Проверено IgorS. |
Авторы статьи: Сергеев Никита (группа 614) (1.1, 1.2, 1.5, 1.6, 1.7, 1.8, 1.10, 2.4), Стрельцова Виктория (группа 614) (1.2, 1.3, 1.4, 1.6, 1.7, 1.9, 1.10, 2.4)
Метод "Разделяй и властвуй" вычисления собственных значений и векторов трёхдиагональной матрицы | |
Последовательный алгоритм | |
Последовательная сложность | [math] c\frac{4}{3}n^{3} [/math] |
Объём входных данных | [math] 2n + 1 [/math] |
Объём выходных данных | [math] n(n + 1) [/math] |
Параллельный алгоритм | |
Параллельная сложность | [math] O(n^{2.3}) [/math]
крайне редко: [math] O(n^{2}) [/math] |
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод разделяй и властвуй вычисления собственных значений и векторов трёхдиагональной матрицы - является наиболее быстрым из существующих методов вычисления всех собственных значений и собственных векторов трехдиагональной матрицы, начиная с порядка n, который примерно равен 26. (Точное значение этого порогового порядка в конкретном случае зависит от компьютера.)
Численно устойчивая реализация данного метода весьма не тривиальна, так как не смотря на то, что впервые метод был предложен в 1981 г., "правильный" способ реализации метода был найден лишь в 1992 г. Этот способ был воплощен при помощи LAPACK-программ ssyevd (для плотных матриц) и sstevd (для трехдиагональных матриц). В этих программах стратегия "разделяй-и-влавствуй" используется для матриц порядка выше 25.
Для матриц порядка ниже 25 (или в тех случаях, когда требуются только собственные значения) автоматически происходит переход к методу QR-итерации.
1.2 Математическое описание алгоритма
Пусть
- [math] L = \begin{bmatrix} a_{1} & b_{1}&&&&& \\ b_{1} & \ddots & \ddots \\ & \ddots & a_{m-1} & b_{m-1} \\ && b_{m-1} & a_{m} & b_{m} \\ &&& b_{m} & a_{m+1} & b_{m+1} \\ &&&& b_{m+1} & \ddots \\ &&&&&& \ddots & b_{n-1} \\ &&&&&& b_{n-1} & a_{n} \\ \end{bmatrix} = \begin{bmatrix} a_{1} & b_{1} &&&&& \\ b_{1} & \ddots & \ddots \\ & \ddots & a_{m-1} & b_{m-1} \\ && b_{m-1} & a_{m} - b_{m} \\ &&&& a_{m+1} - b_{m} & b_{m+1} \\ &&&& b_{m+1} & \ddots \\ &&&&&& \ddots & b_{n-1} \\ &&&&&& b_{n-1} & a_{n} \\ \end{bmatrix} + [/math]
[math] + \begin{bmatrix} &&&&&&& \\ &&&&&&& \\ &&&b_{m} & b_{m} \\ &&&b_{m} & b_{m} \\ &&&&&&& \\ &&&&&&& \\ \end{bmatrix} = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m} * \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 0 , \ldots , 0 , 1 , 1 , 0 \ldots , 0 \end{bmatrix} \equiv \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m}vv^{T} [/math]
В предположении, что известны спектральные разложения матриц [math]T_{1}[/math] и [math]T_{2}[/math]: [math]T_{i}=Q_{i} \Lambda_{i} Q_{i}^{T} [/math]. На самом деле, они будут вычисляться рекурсивно тем же самым алгоритмом.
Можно установить связь между собственными значениями матрицы Т и собственными значениями матриц [math]T_{1}[/math] и [math]T_{2}[/math]. Получается:
[math] T = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m}vv^{T} = \begin{bmatrix} Q_{1} \Lambda_{1} Q_{1}^{T} & 0 \\ 0 & Q_{2} L_{2} Q_{2}^{T}\end{bmatrix} + b_{m}vv^{T} = \begin{bmatrix} Q_{1} & 0 \\ 0 & Q_{2}\end{bmatrix}(\begin{bmatrix} \Lambda_{1} & \\ & \Lambda_{2}\end{bmatrix} + b_{m}vv^{T})\begin{bmatrix} Q_{1}^{T} & 0 \\ 0 & Q_{2}^{T}\end{bmatrix} [/math],
где [math] u = \begin{bmatrix} Q_{1}^{T} & 0 \\ 0 & Q_{2}^{T}\end{bmatrix}v [/math] - матрица, в первой строке которой находятся элементы последнего столбца матрицы [math] Q_{1}^{T}[/math], а во второй - элементы первого столбца матрицы [math] Q_{2}^{T}[/math], так как [math]v = \begin{bmatrix} 0 , \ldots , 0 , 1 , 1 , 0 \ldots , 0 \end{bmatrix}^T[/math]. Следовательно, [math]T[/math] имеет такие же собственные значения, что и подобная ей матрица [math]D + \rho uu^{T}[/math], где [math]D = \begin{bmatrix} L_{1} & 0 \\ 0 & L_{2}\end{bmatrix}[/math] - диагональная матрица, [math]\rho = b_{m}[/math] - число, а [math]u[/math] - вектор. В дальнейшем предполагаем, не ограничивая общности, что диагональные элементы [math]d_{1}, \ldots, d_{n}[/math] матрицы [math]D[/math] упорядочены по не возрастанию: [math]d_{n} \lt = \ldots \lt =d_{1}[/math].
Для того, чтобы найти собственные значения матрицы [math]D + \rho uu^{T}[/math], потребуется вычислить её характеристический многочлен, считая пока матрицу [math]D - \lambda I[/math] невырожденной. Тогда получаем [math]det(D + \rho uu^{T} - \lambda I) = det((D - \lambda I)(I + \rho (D- \lambda I)^{-1} uu^{T}))[/math].
Так как [math]D - \lambda I[/math] невырожденная, [math]det(I + \rho (D - \lambda I)^{-1}uu^{T}) = 0[/math] тогда и только тогда, когда [math]\lambda[/math] - является собственным значением. Можем заметить, что матрица [math]I + \rho (D - \lambda I)^{-1}uu^{T}[/math] получается из единичной путём добавления матрицы ранга 1. Определитель такой матрицы не сложно вычислить.
Лемма 1. Справедливо равенство [math]det(I + xy^{T}) = 1 + y^{T}x[/math], где [math]x[/math] и [math]y[/math] - векторы.
Следовательно, получаем [math]det(I + \rho (D - \lambda I)^{-1}uu^{T}) = 1 + \rho u^{T}(D - \lambda I)^{-1}u[/math] [math] = 1 + \rho \sum_{i=1, n} \frac{u_{i}^{2}} {d_{i}-\lambda} \equiv f(\lambda)[/math] ,
т.е. собственные значения матрицы [math]T[/math] являются корнями так называемого векового уравнения [math]f(\lambda) = 0[/math]. Если все числа [math]d_{i}[/math] различны между собой и все [math]u_{i} \lt \gt 0[/math] (случай общего положения), то [math]f(\lambda)[/math] имеет график типа, который показан на рис.1(где [math]n = 4[/math] и [math]\rho \gt 0[/math]).
По рисунку можно заметить, что прямая [math]y = 1[/math] является горизонтальной асимптотой для данного графика, а прямые [math]\lambda = d_{i}[/math] есть вертикальные асимптоты. Так как [math]f^{'}(\lambda) = \rho \sum_{i=1, n} \frac{u_{i}^{2}} {(d_{i}-\lambda)^{2}}\gt 0 [/math], функция возрастает всюду, кроме точек [math]\lambda = d_{i}[/math]. Из этого следует, что корни функции разделяются числами [math]d_{i}[/math] и ещё один корень находится справа от точки [math]d_{1}[/math] (на рис. 1 [math]d_{1} = 4[/math]). (При [math]\rho\lt 0[/math] функция [math]f(\lambda)[/math] всюду убывает и соответствующий корень будет находиться слева от точки [math]d_{n}[/math]). Для функции [math]f(\lambda)[/math], которая является монотонной и гладкой на каждом из интервалов [math](d_{i+1},d_{i})[/math], можно найти вариант метода Ньютона, который будет быстро и монотонно сходиться к каждому из корней, при условии, что начальная точка взята в [math](d_{i+1},d_{i})[/math]. Нам достаточно знать тот факт, что на практике метод сходится к каждому собственному значению за строго ограниченное число шагов. Поскольку вычисление [math]f(\lambda)[/math] и [math]f^{'}(\lambda)[/math] стоит [math]O(n)[/math] флопов, для вычисления одного собственного значения достаточно [math]O(n)[/math] флопов, следовательно для вычисления всех [math]n[/math] собственных значений матрицы [math]D + \rho uu^{T}[/math] потребуется [math]O(n^{2})[/math] флопов. Для собственных векторов матрицы [math]D + \rho uu^{T}[/math] мы легко можем получить явные выражения.
Лемма 2. Если [math]\alpha[/math] - собственное значение матрицы [math]D + \rho uu^{T}[/math], то соответствующий вектор равен [math](D - \alpha I)^{-1}u[/math]. Поскольку матрица [math]D - \alpha I[/math] диагональная, для вычисления такого вектора достаточно [math]O(n)[/math] флопов.
Доказательство. [math](D + \rho uu^{T})[(D - \alpha I)^{-1}u] = (D - \alpha I + \alpha I + \rho uu^{T})(D - \alpha I)^{-1}u = u + \alpha (D - \alpha I)^{-1}u + u[\rho u^{T}(D - \alpha I)^{-1}u]= [/math]
[math] = u + \alpha(D - \alpha I)^{-1}u - u = \alpha [(D - \alpha I)^{-1}u][/math],
поскольку
[math] \rho u^{T}(D - \alpha I)^{-1}u + 1 = f(\alpha) = 0 [/math].
Что и требовалось доказать.
Получается, что для вычисления по этой простой формуле всех [math]n[/math] собственных векторов потребуется [math]O(n^{2})[/math] флопов. К сожалению, данная формула не обеспечивает нам численной устойчивости, так как для двух очень близких значений [math]\alpha_{i}[/math] может давать неортогональные приближенные собственные векторы [math]u_{i}[/math]. Учёным потребовалось целое десятилетие для того, чтобы найти устойчивую альтернативу исходному описанию алгоритма. Подробнее детали будут обсуждаться ниже в данном разделе.
Алгоритм является рекурсивным.
До сих пор полагалось, что все [math]d_{i}[/math] различны и все [math]u_{i}[/math] отличны от нуля. Если это будет не так, то вековое уравнение [math]f(\lambda)=0[/math] имеет [math]k[/math] вертикальных асимптот, где [math]k\lt n[/math], а следовательно [math]k[/math] корней. Однако оказывается, что остальные [math]n - k[/math] собственных значений могут быть определены без каких-либо усилий: в случае, если [math]d_{i}=d_{i+1}[/math] или [math]u_{i}=0[/math], легко показать, что [math]d_{i}[/math] является собственным значением и для матрицы [math]D + \rho uu^{T}[/math]. В такой ситуации мы говорим о дефляции. На практике выбирается некоторое пороговое значение и дефляция для числа [math]d_{i}[/math] регистрируется, в том случает, если в смысле этого порога [math]d_{i}[/math] достаточно близко к [math]d_{i+1}[/math] либо [math]u_{i}[/math] достаточно мало.
Основной выигрыш от использования дефляции состоит не в том, что убыстряется решение векового уравнения - этот этап в любом случае стоит лишь [math]O(n^{2})[/math] операций. Выигрыш заключается в ускорении матричного умножения на последнем шаге алгоритма. Действительно, если [math]u_{i}=0[/math], то соответствующий собственный вектор есть i-й столбец [math]e_{i}[/math] единичной матрицы. Это означает, что [math]e_{i}[/math] является i-м столбцом в матрице [math]Q_{'}[/math], следовательно при формировании матрицы [math]Q[/math] применяя левое умножение [math]Q_{1}[/math] на [math]Q_{2}[/math] вычисление i-го столбца не будет требовать никаких затрат. Аналогичное упрощение возможно в случае [math]d_{i} = d_{i+1}[/math]. При дефляции многих собственных значений устраняется большая часть работы, которая связана с матричным умножением.
Далее пойдет речь о решении векового уравнения, которое является одной из основных частей алгоритма.
Предположим, что некоторое [math]u_{i}[/math], хотя и мало, все же недостаточно мало для того, чтобы была зарегистрирована дефляция. В этом случае применение метода Ньютона к решению векового уравнения встречается с затруднениями. Вспомним, что пересчет приближённого решения [math]u_{j}[/math] уравнения [math]f(\lambda) = 0[/math] в методе Ньютона основан на следующих положениях:
1. Вблизи точки [math]\lambda = \lambda_{j}[/math] функция [math]f(\lambda)[/math] аппроксимируется линейной функцией [math]l(\lambda)[/math]; график есть прямая линия, касающаяся графика функции [math]f(\lambda)[/math] при [math]\lambda = \lambda_{j}[/math].
2. В качестве [math]\lambda_{j+1}[/math] берётся нуль этого линейного приближения, т.е. [math]l(\lambda_{j+1})=0[/math].
Функция, показанная на рис.1, не доставляет видимых трудностей методу Ньютона, поскольку вблизи каждого своего нуля [math]f(\lambda)[/math] достаточно хорошо аппроксимируется линейными функциями. Однако рассмотрим график функции на рис. 2. Она получена из функции на рис. 1 заменой значения .5 для [math]u_{i}^{2}[/math] на .001. Это новое значение недостаточно мало для того, чтобы вызвать дефляцию. График функции в левой части рис.2 визуально не отличим от её вертикальных и горизонтальных асимптот, поэтому в правой части укрупненно воспроизведён фрагмент графика, прилегающий к вертикальной асимптоте [math]\lambda = 2[/math]. Видно, что график слишком быстро "выполняет поворот" и для большей части значений [math]\lambda[/math] почти горизонтален. Поэтому, применяя метод Ньютона почти к любому начальному приближению [math]\lambda_{0}[/math], мы получаем линейное приближение [math]l(\lambda)[/math] с почти горизонтальным графиком и малым положительным угловым коэффициентом. В результате [math]\lambda_{1}[/math] является отрицательным числом, огромным по абсолютной величине, которое совершенно бесполезно в качестве приближения к истинному корню.
Чтобы найти выход из этого положения, можно модифицировать метод Ньютона следующим образом: раз [math]f(\lambda)[/math] нельзя хорошо приблизить линейной функцией [math]l(\lambda)[/math], попробуем взять в качестве приближения какую-нибудь другую простую функцию [math]h(\lambda)[/math]. Нет ничего особого именно в прямых линиях: для метода Ньютона вместо [math]l(\lambda)[/math] можно взять любое приближение [math]h(\lambda)[/math], значения и нули которого легко вычисляются. Функция [math]f(\lambda)[/math] имеет полюсы в точках [math]d_{i}[/math] и [math]d_{i+1}[/math], которые определяют её поведение в соответствующих окрестностях. Поэтому при поиске корня в интервале [math](d_{i+1}, d_{i})[/math] естественно выбрать функцию [math]h(\lambda)[/math], также имеющую эти полюсы, т.е. функцию вида [math]h(\lambda)= \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda} + c_{3}[/math]
Константы [math]c_{1},c_{2}[/math] и [math]c_{3}[/math] обеспечивающие, что [math]h(\lambda)[/math] есть приближение к [math]f(\lambda)[/math], можно выбрать несколькими способами. Отметим, что если [math]c_{1},c_{2}[/math] и [math]c_{3}[/math] уже известны, то уравнение [math]h(\lambda)=0[/math] легко решается относительно [math]\lambda[/math], поскольку сводится к эквивалентному квадратному уравнению [math]c_{1}(d_{i+1}-\lambda)+c_{2}(d_{i}-\lambda)+c_{3}(d_{i}-\lambda)(d_{i+1}-\lambda)=0[/math]
Пусть [math]\lambda_{j}[/math] - приближённое значение корня. определим [math]c_{1},c_{2}[/math] и [math]c_{3}[/math] так, чтобы [math]\frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda} + c_{3} = h(\lambda) \approx f(\lambda) = 1 + \rho \sum_{k=1, n} \frac{u_{k}^{2}} {d_{k}-\lambda} [/math] для [math]\lambda[/math] в окрестности [math]\lambda_{j}[/math]. Заметим, что [math]f(\lambda) = 1 + \rho \sum_{k=1, i} \frac{u_{k}^{2}} {d_{k}-\lambda} + \rho \sum_{k=i+1, n} \frac{u_{k}^{2}} {d_{k}-\lambda} \equiv 1 + \psi_{1}(\lambda) + \psi_{2}(\lambda)[/math].
Если [math]\lambda \in (d_{i+1},d_{i})[/math], то [math]\psi_{1}(\lambda)[/math] есть сумма положительных слагаемых, а [math]\psi_{2}(\lambda)[/math] - сумма отрицательных. Поэтому и [math]\psi_{1}(\lambda)[/math], и [math]\psi_{2}(\lambda)[/math] могут быть вычислены с высокой точностью; однако при их сложении вполне вероятно взаимное уничтожение верных разрядов и потеря относительной точности в сумме. Возьмем числа [math]c_{1}[/math] и [math]\hat{c_{1}}[/math], такие, что функция [math]h_{1}(\lambda) \equiv \hat{c_{1}} + \frac{c_{1}}{d_{i}-\lambda}[/math] удовлетворяет условиям [math]h_{1}(\lambda_{j}) = \psi_{1}(\lambda_{j})[/math] и [math]h_{1}^{'}(\lambda_{j})=\psi_{1}^{'}(\lambda_{j})[/math] (*)
Это означает, что гипербола, являющаяся графиком функции [math]h_{1}(\lambda)[/math], касается графика функции [math]\psi_{i}(\lambda)[/math] при [math]\lambda = \lambda_{j}[/math]. Два условия в (*) - это обычные условия метода Ньютона, за исключением того, что вместо прямой в качестве приближения используется гипербола. Легко проверить, что [math]c_{1}=\psi_{1}^{'}(\lambda_{j})(d_{i} - \lambda_{j})^{2}[/math] и [math]\hat{c_{1}}=\psi_{1}(\lambda_{j}) - \psi_{1}^{'}(\lambda_{j})(d_{i} - \lambda_{j})[/math].
Подобным же образом выбираем [math]c_{2}[/math] и [math]\hat{c_{2}}[/math] так, чтобы функция [math]h_{2}(\lambda) \equiv \hat{c_{2}} + \frac{c_{2}}{d_{i+1}-\lambda}[/math] удовлетворяла условиям [math]h_{2}(\lambda_{j}) = \psi_{2}(\lambda_{j})[/math] и [math]h_{2}^{'}(\lambda_{j})=\psi_{2}^{'}(\lambda_{j})[/math]
Наконец, полагаем [math]h(\lambda) = 1 + h_{1}(\lambda) + h_{2}(\lambda) = (1 + \hat{c_{1}} + \hat{c_{2}} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda} \equiv c_{3} + \frac{c_{1}}{d_{i}-\lambda} + \frac{c_{2}}{d_{i+1}-\lambda}[/math].
1.3 Вычислительное ядро алгоритма
Вычислительным ядром последовательной схемы решения будет являться вычисление матрицы [math]Q[/math] собственных векторов при помощи умножения матрицы [math]Q = \begin{bmatrix} Q_{1} & 0 \\ 0 & Q_{2}\end{bmatrix}[/math] на матрицу [math]Q^{'}[/math]. Эта операция имеет сложность [math]cn^{3}[/math] о чём будет говориться ниже, в разделе #Последовательная сложность алгоритма .
Данной операции предшествует вычисление собственных значений и векторов матрицы [math] D + \rho uu^{T}[/math].
1.4 Макроструктура алгоритма
В разделе #Информационный граф описана структура алгоритма, в которой есть блок умножения матриц для вычисления собственных векторов, являющийся вычислительным ядром алгоритма. В соответствующем разделе (#Вычислительное ядро алгоритма) мы упоминали о том, что данному блоку предшествует вычисление собственных значений, которое производится методом Ньютона.
1.5 Схема реализации последовательного алгоритма
Рассмотрим каким именно образом происходит вычисление собственных значений и собственных векторов симметричной трехдиагональной матрицы при помощи стратегии "разделяй и властвуй":
proc dc_eig[math](T,Q,\Lambda)...[/math] по входной матрице [math]T[/math] вычисляются выходные матрицы [math]Q[/math] и [math]\Lambda[/math], такие, что [math]T = Q\Lambda Q^{T}[/math]
В случае, если [math]T[/math] - матрица размера [math]1[/math] x [math]1[/math] :
1. Присвоить выходным параметрам значения [math] Q = 1, \Lambda = T[/math]
Иначе:
1. Представить [math]T[/math] в виде [math] T = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2}\end{bmatrix} + b_{m}vv^{T} [/math]
2. call dc_eig[math](T_{1},Q_{1},\Lambda_{1})[/math]
3. call dc_eig[math](T_{2},Q_{2},\Lambda_{2})[/math]
4. Построить [math]D+\rho uu^{T}[/math] по [math] \Lambda_{1},\Lambda_{2}, Q_{1}, Q_{2}[/math]
5. Найти матрицу собственных значений [math]\Lambda[/math]
6. Найти матрицу собственных векторов [math]Q^{'}[/math] для матрицы [math]D+\rho uu^{T}[/math]
7. Построить матрицу собственных векторов [math]Q[/math] для матрицы [math]T[/math] : [math] Q = \begin{bmatrix} Q_{1} & 0 \\ 0 & Q_{2}\end{bmatrix}* Q^{'} [/math]
8. Присвоить выходным параметрам значения [math]Q[/math] и [math]\Lambda[/math]
endif
1.6 Последовательная сложность алгоритма
Рассмотрим сложность алгоритма. Пусть [math]t(n)[/math] - число флопов, которое потребуется при обработке матрицы размера [math] n * n[/math] процедурой dc_eig. В таком случае
[math] t(n) = 2t(n/2) [/math] два рекурсивных обращения к dc_eig[math](T_{i},Q_{i},\Lambda_{i})[/math] [math] +O(n^{2})[/math] вычисление собственных значений матрицы [math]D+\rho uu^{T}[/math] [math] +O(n^{2})[/math] вычисление собственных векторов матрицы [math]D+\rho uu^{T}[/math] [math] +c*n^{3}[/math] вычисление матрицы [math]Q = \begin{bmatrix} Q_{1} & 0 \\ 0 & Q_{2}\end{bmatrix}*Q^{'}[/math]
Если [math] Q_{1}, Q_{2}[/math] и [math]Q^{'}[/math] рассматривать как плотные матрицы и использовать стандартный алгоритм матричного умножения, то константа [math] c [/math] в последней строке будет равна 1. Следовательно, именно это умножение и будет составлять наиболее трудоёмкую часть алгоритма в целом. Игнорируя члены порядка [math]n^{2}[/math], получаем [math]t(n) = 2t(n/2) + cn^{3}[/math]. Решив это разностное уравнение, находим [math] t \approx c\frac{4}{3}n^{3} [/math]
На практике константа [math]c[/math] обычно оказывается гораздо меньше 1, так как матрица [math]Q^{'}[/math] весьма разрежена вследствие явления, которое называется дефляцией, и которое было описано выше.
1.7 Информационный граф
На рисунке 3 изображена структура алгоритма.
Операции:
[math]D[/math] - операция Divide разделения матрицы [math] T [/math] на матрицы [math]T_{1}[/math] и [math]T_{2}[/math]
Индексы - размерность
[math]S_{k}[/math] - операция Conquer сбора матрицы [math] D [/math]
[math] L_{k} [/math] - операция поиска собственных значений
[math] S^{'} [/math] - операция поиска собственных векторов матрицы [math] Q^{'} [/math]
[math] S [/math] - операция поиска собственных векторов матрицы [math] Q [/math]
1.8 Ресурс параллелизма алгоритма
В структуре алгоритма имеем два параллельных блока - вызов рекурсивных функций dc_eig для вычисления собственных значений и векторов матриц [math]T_{1}[/math] и [math]T_{2}[/math] - это единственная часть алгоритма, в которой возможно использовать параллелизм.
Рекурсивное разделение матрицы ведёт к иерархии вычислительных подблоков с графом зависимости данных, который принимает вид двоичного дерева. Такая структура является естественным путем разделения вычислений между процессорами.
- В вершине дерева все процессы взаимодействуют.
- В каждой ветви дерева вычисление делится на два вычислительных подблока, внутри каждого из которых процессы параллельно взаимодействуют.
- В листьях деревьев каждый процесс занимается вычислением независимо.
В случае реализации без параллелизма, функции dc_eig отрабатывают последовательно - сначала со входными параметрами [math]T_{1}, Q_{1}, \Lambda_{1}[/math], затем - [math]T_{2}, Q_{2}, \Lambda_{2}[/math].
Таким образом, благодаря параллелизму высота алгоритма параллельного составляет [math]log_{2}(n)[/math], тогда как при последовательной реализации высота алгоритма равна сумме геометрической прогрессии [math]1+2+4+8+...+2^{n-1} = 2^{n} - 1[/math], что значительно сокращает число итераций алгоритма.
Поскольку функции являются рекурсивными, их параллельный вызов даст значительный выигрыш во времени.
При размерности матрицы больше 3 параллельная реализация позволяет сократить количество этапов работы алгоритма больше, чем в два раза.
1.9 Входные и выходные данные алгоритма
Входные данные: трёхдиагональная симметрическая матрица, описанная в разделе #Математическое описание алгоритма.
[math] L = \begin{bmatrix} a_{1} & b_{1}&&&&& \\ b_{1} & \ddots & \ddots \\ & \ddots & a_{m-1} & b_{m-1} \\ && b_{m-1} & a_{m} & b_{m} \\ &&& b_{m} & a_{m+1} & b_{m+1} \\ &&&& b_{m+1} & \ddots \\ &&&&&& \ddots & b_{n-1} \\ &&&&&& b_{n-1} & a_{n} \\ \end{bmatrix} [/math]
Объём входных данных: [math] 2n + 1 [/math] (в силу симметричности достаточно хранить только диагональ и над/под диагональные элементы).
Выходные данные: Вектор собственных значений длины [math] n [/math] и [math] n [/math] собственных векторов длины [math] n [/math] , соответствующих собственным значениям исходной матрицы.
Объём выходных данных: [math]n(n + 1) [/math]
1.10 Свойства алгоритма
Данный алгоритм является самым быстрым алгоритмом среди существующих: Разделяй и властвуй, QR, Бисекция и обратная итерация.
Последовательная сложность данного алгоритма: [math] t = c\frac{4}{3}n^{3} [/math]
Она удовлетворяет соотношению [math]t(n) = n^3 +2t(\frac{n}{2})[/math]
Параллельная сложность алгоритма (за счет дефляции): [math] O(n^{2.3})[/math]; в крайне редких случаях: [math] O(n^{2}) [/math].
Особенности алгоритма:
1. Дефляция (#Дефляция)
2. Адаптированный метод Ньютона (#Макроструктура алгоритма)
2 Программная реализация алгоритма
Вторая часть описания алгоритмов в рамках AlgoWiki рассматривает все составные части процесса их реализации. Рассматривается как последовательная реализация алгоритма, так и параллельная. Описывается взаимосвязь свойств программ, реализующих алгоритм, и особенностей архитектуры компьютера, на которой они выполняются. Исследуется работа с памятью, локальность данных и вычислений, описывается масштабируемость и эффективность параллельных программ, производительность компьютеров, достигаемая на данной программе. Обсуждаются особенности реализации для разных классов архитектур компьютеров, приводятся ссылки на реализации в существующих библиотеках.
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
Тестирование реализации алгоритма проводилось на суперкомпьютере "Ломоносов" с использованием 1, 2, 4, 8, 16 процессоров на матрицах размера от 4 до 4096. Реализация произведена на библиотеке OpenMP.
Общая эффективность программы увеличивается при увеличении числа процессоров (за счет сокращения времени работы программы) и уменьшается при увеличении размера матрицы (за счет увеличения времени обработки входных данных). При одновременном увеличении числа процессоров и размерности матрицы общая эффективность падает.
Ниже приведена схема зависимости времени работы программы от размера матрицы при разном числе процессоров. При размере матрицы от 4 до 1024 время работы очень мало, поэтому эти данные не указаны на схеме.
Параметры компиляции и запуска:
ssh compiler module add slurm module add openmpi/1.5.5-icc g++ _scratch/DivideAndConquer.c++ -fopenmp -std=c++0x -o DC sbatch -p test -n1 run ./DC
Код реализации: https://drive.google.com/open?id=0B0G2UV7cuLwHQk9xd1lyeDNJOXc
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
Единственный найденный пример реализации описан в Francoise Tisseury, Jack Dongarra, "Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal Eigenvalue Problem on Distributed Memory Architectures" ([3] с. 7, 19-20).
3 Литература
[1] Дж. Деммель, «Вычислительная линейная алгебра» //С. 230-235