Участник:Y.ryabkova/Умножение матриц методом Штрассена: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 13: Строка 13:
  
 
Пусть <math> A, B \in \mathbb{R}^{n \times n} </math> — заданные плотные матрицы. Вычислим матрицу <math> C \in \mathbb{R}^{n \times n} </math>, такую, что  <math> C = AB </math>. <br>
 
Пусть <math> A, B \in \mathbb{R}^{n \times n} </math> — заданные плотные матрицы. Вычислим матрицу <math> C \in \mathbb{R}^{n \times n} </math>, такую, что  <math> C = AB </math>. <br>
Для удобства будем полагать, что <math> n = 2^L, L \in \mathbb{N} </math>. Это предположение не ограничивает общности рассуждений, так как если это свойство не выполнено и <math> n < 2^L </math>, то можно рассмотреть квадратные матрицы <math>\tilde{A}</math> и <math>\tilde{B}</math> порядка <math> 2^L </math> следующего вида: <br>
+
Для удобства будем полагать, что <math> n = 2^L, L \in \mathbb{N} </math>. Это предположение не ограничивает общности рассуждений, так как если это свойство не выполнено и <math> n < 2^L </math>, можно рассмотреть квадратные матрицы <math>\tilde{A}</math> и <math>\tilde{B}</math> порядка <math> 2^L </math> следующего вида: <br>
 
: <math> \tilde{A} = \begin{bmatrix}
 
: <math> \tilde{A} = \begin{bmatrix}
 
   A & 0 \\
 
   A & 0 \\

Версия 22:52, 16 октября 2017

Основные авторы описания: Ю.В.Рябкова

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Штрассена, описанный в 1969 году Фолькером Штрассеном, предназначен для умножения двух произвольных матриц при условии согласованности их размеров. В данном варианте алгоритма будет рассмотрен только частный случай умножения квадратных матриц порядка [math]n[/math] над полем вещественных чисел [math]\mathbb{R}[/math].
В 1965 году Штрассен нашел способ умножения двух матриц размера [math]2 \times 2[/math] с использованием семи умножений, в то время как классический алгоритм перемножения матриц требует восьми умножений. Стоит отметить, что данный способ не использует свойство коммутативности для операции перемножения чисел.
Теперь предположим, что [math]n = 2^L[/math], [math] L \in \mathbb{N} [/math] (далее будет показано, что это предположение не нарушает общности рассуждений), и будем рассматривать матрицы [math]A[/math] и [math]B[/math] как блочные [math]2 \times 2[/math]-матрицы с размером блоков [math]\frac{n}{2} \times \frac{n}{2} [/math]. Так как для блочных матриц правила умножения остаются теми же, как если бы на месте блока стояло число, а в методе Штрассена умножения [math]2 \times 2[/math]-матриц не используется коммутативность, этот метод подходит и для умножения блочных [math]2 \times 2[/math]-матриц. Таким образом, от задачи умножения [math]2 \times 2[/math]-матриц с семью умножениями можно перейти к задаче умножения [math]n \times n[/math]-матриц, требующей не более чем [math] O(7n^{\log_27}) [/math] операций, что асимптотически лучше классического способа умножения матриц сложностью [math]O(n^3)[/math]. На данный момент известны и более быстрые методы умножения матриц, однако алгоритм Штрассена относительно прост в реализации и эффективен на плотных матрицах не очень больших размеров, поэтому всё ещё широко используется.

1.2 Математическое описание алгоритма

Пусть [math] A, B \in \mathbb{R}^{n \times n} [/math] — заданные плотные матрицы. Вычислим матрицу [math] C \in \mathbb{R}^{n \times n} [/math], такую, что [math] C = AB [/math].
Для удобства будем полагать, что [math] n = 2^L, L \in \mathbb{N} [/math]. Это предположение не ограничивает общности рассуждений, так как если это свойство не выполнено и [math] n \lt 2^L [/math], можно рассмотреть квадратные матрицы [math]\tilde{A}[/math] и [math]\tilde{B}[/math] порядка [math] 2^L [/math] следующего вида:

[math] \tilde{A} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \: \: \tilde{B} = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}, [/math]

то есть матрицы, полученные из матриц [math] A [/math] и [math] B [/math] дополнением их нулевыми строками и столбцами в позициях [math] i = \overline{n+1, 2^L} [/math] до размера [math] 2^L \times 2^L [/math]. По правилу перемножения блочных матриц:

[math] \tilde{C} = \tilde{A}\tilde{B} = \begin{bmatrix} AB & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}. [/math]

Таким образом, решая задачу для матриц [math] \tilde{A} [/math] и [math]\tilde{B} [/math], получим решение исходной задачи умножения матриц [math] A [/math] и [math] B [/math] как левый верхний [math]n \times n[/math]-блок матрицы [math]\tilde{C}[/math].
Итак, [math] n = 2^L, L \in \mathbb{N} [/math].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература