Участник:Kruglikov/PLSA: различия между версиями
Kruglikov (обсуждение | вклад) |
Kruglikov (обсуждение | вклад) |
||
Строка 35: | Строка 35: | ||
== Литература == | == Литература == | ||
<references /> | <references /> | ||
+ | [http://www.machinelearning.ru/wiki/images/2/20/Voron-PTM-1.pdf Воронцов К. В. Вероятностные тематические модели. Лекция 1. Введение (слайды)] | ||
[[en:Description of algorithm properties and structure]] | [[en:Description of algorithm properties and structure]] |
Версия 23:29, 28 октября 2017
Общая схема описания алгоритмов имеет следующий вид:
Содержание
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Задача тематического моделирования заключается в том, чтобы выделить в коллекции текстовых документов скрытые структуры, называемые темами. Неформально под темой понимается семантически однородное множество документов. Более формально, темой называется условное распределение на множестве терминов [math]p(w|t)[/math], а тематикой документа называется условное распределение [math]p(t|d)[/math]. Переменная [math]t[/math] является скрытой. Таким образом, задача тематического моделирования — оценить вероятности [math]p(w|t)[/math] и [math]p(t|d)[/math] по наблюдаемым частотам [math]p(w|d)[/math] слов в документах.
Задачу восстановления скрытого распределения можно решать, максимизируя правдоподобие выборки EM-алгоритмом. В применении к тематическому моделированию такой подход называется probabilistic latent semantic analysis — PLSA.
1.2 Математическое описание алгоритма
Пусть [math]D[/math] — конечное множество документов, [math]W[/math] — конечное множество терминов, [math]T[/math] — конечное множество тем. [math](d_i, w_i, t_i)_{i=1}^n \subset D \times W \times T[/math] — коллекция текстовых документов.
Введём набор счётчиков:
[math]n_{dwt} = \sum_{i=1}^n [d_i = d][w_i = w][t_i = t][/math] — частота [math](d_i, w_i, t_i)[/math] в коллекции;
[math]n_{wt} = \sum_{d} n_{dwt}[/math] — частота термина [math]w[/math] в теме [math]t[/math];
[math]n_{td} = \sum_{w} n_{dwt}[/math] — частота терминов темы [math]t[/math] в документе [math]d[/math];
[math]n_{t} = \sum_{d, w} n_{dwt}[/math] — частота терминов темы [math]t[/math] коллекции;
[math]n_{dw} = \sum_{t} n_{dwt}[/math] — частота термина [math]w[/math] в документе [math]d[/math];
[math]n_{w} = \sum_{d, t} n_{dwt}[/math] — частота термина [math]w[/math] в коллекции;
[math]n_{d} = \sum_{w, t} n_{dwt}[/math] — длина документа [math]d[/math];
[math]n = \sum_{d, w, t} n_{dwt}[/math] — длина коллекции.
2 Программная реализация алгоритма
3 Литература
Воронцов К. В. Вероятностные тематические модели. Лекция 1. Введение (слайды)