Участник:Kiseliov/Метод регуляризации Тихонова: различия между версиями
Kiseliov (обсуждение | вклад) (Создание статьи | первые шаги в заполнении) |
Kiseliov (обсуждение | вклад) (Заполнение пункта →Общее описание алгоритма) |
||
Строка 3: | Строка 3: | ||
= ЧАСТЬ. Свойства и структура алгоритмов = | = ЧАСТЬ. Свойства и структура алгоритмов = | ||
== Общее описание алгоритма == | == Общее описание алгоритма == | ||
+ | Метод регуляризации Тихонова заключается в следующем: | ||
+ | |||
+ | Нам дано некоторое искажённое изображение (в нашем случае мы рассматриваем статические аберрации). Фактически, некоторое изображение искажается при помощи свёртки с так называемым ядром. То есть, мы имеем уравнение Фредгольма первого рода типа свертки вида:<br> | ||
+ | <math>K \circledast z =\textstyle\int\limits_{-\infty}^{\infty}\textstyle\int\limits_{-\infty}^{\infty}K(x_1-s_1,x_2-s_2 )z(s_1,s_2 )ds_1\,ds_2 = u(x_1,x_2 ), -\infty<x_1,x_2<\infty</math><br> | ||
+ | Здесь <math>K(x_1,x_2 )∈L_2 (\mathbb{R}^2)</math> – аппаратная функция прибора (ядро), <math>u(x_1,x_2 )∈L_2 (\mathbb{R}^2)</math> – искаженное изображение, а <math>z(x_1,x_2 )</math> – искомое реконструируемое изображение. | ||
+ | |||
+ | Наша задача - восстановить исходное изображение, зная параметры ядра. Метод регуляризации Тихонова говорит о том, что решение имеет вид:<br> | ||
+ | <math>z(x_1 ,x_2 ) = \frac{1}{4\pi^2}\textstyle\int\limits_{-\infty}^{\infty}\textstyle\int\limits_{-\infty}^{\infty}\frac{\bar K (-\omega_1,-\omega_2)\bar u (\omega_1,\omega_2)}{|\bar K (\omega_1,\omega_2 )|^2+\alpha M(\omega_1,\omega_2)}e^{i(\omega_1x_1 + \omega_2x_2)}d\omega_1\,d\omega_2</math><br> | ||
+ | Здесь <math>\bar K (x_1,x_2 )</math> – спектр ядра, <math>\bar u (x_1,x_2 )</math> – спектр искаженного изображения, а <math>M(\omega_1,\omega_2)</math> – заданная четная функция, обладающая следующими свойствами: | ||
+ | # <math>M(\omega_1,\omega_2)</math> кусочно-непрерывна в любой конечной области | ||
+ | # <math>M(\omega_1,\omega_2)</math> неотрицательна: <math>M(0,0)\ge0</math> и <math>M(\omega_1,\omega_2)>0</math> при <math>\omega_1,\omega_2\neq0</math> | ||
+ | # для достаточно больших <math>|\omega_1|,|\omega_2| \Rightarrow M(\omega_1,\omega_2)\ge C>0</math> | ||
+ | # для <math>\forall \alpha >0 \Rightarrow \frac{\bar K (-\omega_1,-\omega_2)}{|\bar K (\omega_1,\omega_2 )|^2+\alpha M(\omega_1,\omega_2)}∈L_2 (\mathbb{R}^2)</math> | ||
== Математическое описание алгоритма == | == Математическое описание алгоритма == |
Версия 17:18, 29 сентября 2022
Автор: Киселёв Е. И.
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Метод регуляризации Тихонова заключается в следующем:
Нам дано некоторое искажённое изображение (в нашем случае мы рассматриваем статические аберрации). Фактически, некоторое изображение искажается при помощи свёртки с так называемым ядром. То есть, мы имеем уравнение Фредгольма первого рода типа свертки вида:
[math]K \circledast z =\textstyle\int\limits_{-\infty}^{\infty}\textstyle\int\limits_{-\infty}^{\infty}K(x_1-s_1,x_2-s_2 )z(s_1,s_2 )ds_1\,ds_2 = u(x_1,x_2 ), -\infty\lt x_1,x_2\lt \infty[/math]
Здесь [math]K(x_1,x_2 )∈L_2 (\mathbb{R}^2)[/math] – аппаратная функция прибора (ядро), [math]u(x_1,x_2 )∈L_2 (\mathbb{R}^2)[/math] – искаженное изображение, а [math]z(x_1,x_2 )[/math] – искомое реконструируемое изображение.
Наша задача - восстановить исходное изображение, зная параметры ядра. Метод регуляризации Тихонова говорит о том, что решение имеет вид:
[math]z(x_1 ,x_2 ) = \frac{1}{4\pi^2}\textstyle\int\limits_{-\infty}^{\infty}\textstyle\int\limits_{-\infty}^{\infty}\frac{\bar K (-\omega_1,-\omega_2)\bar u (\omega_1,\omega_2)}{|\bar K (\omega_1,\omega_2 )|^2+\alpha M(\omega_1,\omega_2)}e^{i(\omega_1x_1 + \omega_2x_2)}d\omega_1\,d\omega_2[/math]
Здесь [math]\bar K (x_1,x_2 )[/math] – спектр ядра, [math]\bar u (x_1,x_2 )[/math] – спектр искаженного изображения, а [math]M(\omega_1,\omega_2)[/math] – заданная четная функция, обладающая следующими свойствами:
- [math]M(\omega_1,\omega_2)[/math] кусочно-непрерывна в любой конечной области
- [math]M(\omega_1,\omega_2)[/math] неотрицательна: [math]M(0,0)\ge0[/math] и [math]M(\omega_1,\omega_2)\gt 0[/math] при [math]\omega_1,\omega_2\neq0[/math]
- для достаточно больших [math]|\omega_1|,|\omega_2| \Rightarrow M(\omega_1,\omega_2)\ge C\gt 0[/math]
- для [math]\forall \alpha \gt 0 \Rightarrow \frac{\bar K (-\omega_1,-\omega_2)}{|\bar K (\omega_1,\omega_2 )|^2+\alpha M(\omega_1,\omega_2)}∈L_2 (\mathbb{R}^2)[/math]
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные: Спектр искажённого изображения и спектр ядра свёртки. Обычно дано искажённое изображение (от которого берётся преобразование Фурье). Мы считаем параметры ядра известными. Оно генерируется, и затем от него берётся преобразование Фурье (получается спектр).
Выходные данные: Спектр исходного изображения. Спектр можно преобразовать в изображение с помощью обратного преобразования Фурье.
1.10 Свойства алгоритма
2 ЧАСТЬ. Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979.
- Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. – М.: Наука, 1990.
- Гудмен Дж. Введение в фурье‐оптику. – М.: Мир, 1970. 364 с.