Метод ортогонализации: различия между версиями
[досмотренная версия] | [выверенная версия] |
Frolov (обсуждение | вклад) (Новая страница: «{{level-m}} '''Ортогонализация Грама-Шмидта''' — это один из методов, в которых на основе множес…») |
ASA (обсуждение | вклад) |
||
(не показано 7 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
{{level-m}} | {{level-m}} | ||
+ | |||
+ | Основные авторы описания: [[Участник:DVIN|Инжелевская Дарья Валерьевна]](текст), [[Участник:Frolov|А.В.Фролов]](общая редактура) | ||
+ | |||
'''Ортогонализация Грама-Шмидта''' — это один из методов, в которых на основе множества линейно независимых векторов <math>{\displaystyle \mathbf {a} _{1},\;\ldots ,\;\mathbf {a} _{N}}</math> строится множество ортогональных векторов <math>{\displaystyle \mathbf {b}_{1},\;\ldots ,\;\mathbf {b} _{N}} </math> или ортонормированных векторов <math>{\displaystyle \mathbf {e} _{1},\;\ldots ,\;\mathbf {e}_{N}} </math>, причём так, что каждый вектор <math>{\displaystyle \mathbf {b} _{j}} </math> или <math>{\displaystyle \mathbf {e} _{j}}</math> может быть выражен линейной комбинацией векторов <math>{\displaystyle \mathbf {a} _{1},\;\ldots ,\; \mathbf {a} _{j}}</math>. Данный процесс может быть использован для получения [[QR-разложения плотных неособенных матриц|QR-разложения]], в которой систему исходных векторов образуют столбцы исходной матрицы, а столбцы матрицы Q представляют из себя набор полученных при ортогонализации векторов. Таким образом, в отличие от методов Гивенса (вращений) и Хаусхолдера (отражений), основанных на приведении матрицы левыми унитарными/ортогональными преобразованиями к треугольному виду, метод ортогонализации основан на приведении матрицы правыми неортогональными (можно сказать, треугольными) преобразованиями к унитарному/ортогональному виду. | '''Ортогонализация Грама-Шмидта''' — это один из методов, в которых на основе множества линейно независимых векторов <math>{\displaystyle \mathbf {a} _{1},\;\ldots ,\;\mathbf {a} _{N}}</math> строится множество ортогональных векторов <math>{\displaystyle \mathbf {b}_{1},\;\ldots ,\;\mathbf {b} _{N}} </math> или ортонормированных векторов <math>{\displaystyle \mathbf {e} _{1},\;\ldots ,\;\mathbf {e}_{N}} </math>, причём так, что каждый вектор <math>{\displaystyle \mathbf {b} _{j}} </math> или <math>{\displaystyle \mathbf {e} _{j}}</math> может быть выражен линейной комбинацией векторов <math>{\displaystyle \mathbf {a} _{1},\;\ldots ,\; \mathbf {a} _{j}}</math>. Данный процесс может быть использован для получения [[QR-разложения плотных неособенных матриц|QR-разложения]], в которой систему исходных векторов образуют столбцы исходной матрицы, а столбцы матрицы Q представляют из себя набор полученных при ортогонализации векторов. Таким образом, в отличие от методов Гивенса (вращений) и Хаусхолдера (отражений), основанных на приведении матрицы левыми унитарными/ортогональными преобразованиями к треугольному виду, метод ортогонализации основан на приведении матрицы правыми неортогональными (можно сказать, треугольными) преобразованиями к унитарному/ортогональному виду. | ||
+ | |||
+ | == Математические основы метода == | ||
+ | |||
+ | [[Классический метод ортогонализации|Классический метод ортогонализации QR-разложения квадратной матрицы (вещественный вариант)]] довольно прост, однако из-за неустойчивости, проявляющейся в неортогональности получаемых систем, крайне редко применяется на практике. | ||
+ | |||
+ | Пусть имеются линейно независимые векторы <math>\mathbf{a}_1,\;\ldots,\;\mathbf{a}_N</math>. | ||
+ | Пусть оператор проекции вектора <math>\mathbf{a}</math> на вектор <math>\mathbf{b}</math> определён следующим образом: <math>\mathbf{proj}_{\mathbf{b}}\,\mathbf{a} = {\langle \mathbf{a}, \mathbf{b} \rangle \over \langle \mathbf{b}, \mathbf{b}\rangle} \mathbf{b} ,</math> | ||
+ | |||
+ | где <math>\langle \mathbf{a}, \mathbf{b} \rangle</math> — скалярное произведение векторов <math>\mathbf{a}</math> и <math>\mathbf{b}</math>. | ||
+ | |||
+ | Скалярное произведение для двух векторов <math>\mathbf{ a= [a_1, a_2, ...,a_k]}</math> и <math>\mathbf{ b= [b_1, b_2, ..., b_k]}</math> в '''''k'''''-мерном действительном пространстве определяется как: | ||
+ | :<math>\langle \mathbf{a}, \mathbf{b} \rangle=\sum_{i=1}^k a_ib_i=a_1b_1+a_2b_2+\cdots+ a_kb_k</math>. | ||
+ | |||
+ | Этот оператор проецирует вектор <math>\mathbf{a}</math> коллинеарно вектору <math>\mathbf{b}</math>. | ||
+ | |||
+ | Ортогональность векторов <math>\mathbf{a}</math> и <math>\mathbf{b}</math> достигается на шаге (2). | ||
+ | |||
+ | Классический процесс Грама — Шмидта выполняется следующим образом: | ||
+ | |||
+ | : <math> | ||
+ | {\begin{array}{lclr} | ||
+ | {\mathbf {b}}_{1}&=&{\mathbf {a}}_{1}&(1)\\ | ||
+ | {\mathbf {b}}_{2}&=&{\mathbf {a}}_{2}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{2}&(2)\\ | ||
+ | {\mathbf {b}}_{3}&=&{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{3}&(3)\\ | ||
+ | {\mathbf {b}}_{4}&=&{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{3}}}\,{\mathbf {a}}_{4}&(4)\\ | ||
+ | &\vdots &&\\{\mathbf {b}}_{N}&=&{\mathbf {a}}_{N}-\displaystyle \sum _{{j=1}}^{{N-1}}{\mathbf {proj}}_{{{\mathbf {b}}_{j}}}\,{\mathbf {a}}_{N}&(N) | ||
+ | \end{array}} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | На основе каждого вектора <math>\mathbf{b}_j \;(j = 1 \ldots N)</math> может быть получен нормированный вектор: <math>\mathbf{e}_j = {\mathbf{b}_j\over \| \mathbf{b}_j \|}</math> (у нормированного вектора направление будет таким же, как у исходного, а норма — единичной). Норма в формуле - согласованная со скалярным произведением: <math>\| x \| = \sqrt{\langle x, x \rangle}</math> | ||
+ | |||
+ | Результаты процесса Грама — Шмидта: | ||
+ | |||
+ | <math>\mathbf{b}_1,\;\ldots,\;\mathbf{b}_N</math> — система ортогональных векторов либо | ||
+ | |||
+ | <math>\mathbf{e}_1,\;\ldots,\;\mathbf{e}_N</math> — система ортонормированных векторов. | ||
+ | |||
+ | Наиболее используемой на практике формой метода является [[Метод ортогонализации с переортогонализацией|вариант метода ортогонализации с переортогонализацией]]. | ||
+ | |||
+ | [[Категория:Законченные статьи]] | ||
+ | |||
+ | [[en:Orthogonalization method]] |
Текущая версия на 16:59, 16 марта 2018
Основные авторы описания: Инжелевская Дарья Валерьевна(текст), А.В.Фролов(общая редактура)
Ортогонализация Грама-Шмидта — это один из методов, в которых на основе множества линейно независимых векторов [math]{\displaystyle \mathbf {a} _{1},\;\ldots ,\;\mathbf {a} _{N}}[/math] строится множество ортогональных векторов [math]{\displaystyle \mathbf {b}_{1},\;\ldots ,\;\mathbf {b} _{N}} [/math] или ортонормированных векторов [math]{\displaystyle \mathbf {e} _{1},\;\ldots ,\;\mathbf {e}_{N}} [/math], причём так, что каждый вектор [math]{\displaystyle \mathbf {b} _{j}} [/math] или [math]{\displaystyle \mathbf {e} _{j}}[/math] может быть выражен линейной комбинацией векторов [math]{\displaystyle \mathbf {a} _{1},\;\ldots ,\; \mathbf {a} _{j}}[/math]. Данный процесс может быть использован для получения QR-разложения, в которой систему исходных векторов образуют столбцы исходной матрицы, а столбцы матрицы Q представляют из себя набор полученных при ортогонализации векторов. Таким образом, в отличие от методов Гивенса (вращений) и Хаусхолдера (отражений), основанных на приведении матрицы левыми унитарными/ортогональными преобразованиями к треугольному виду, метод ортогонализации основан на приведении матрицы правыми неортогональными (можно сказать, треугольными) преобразованиями к унитарному/ортогональному виду.
Математические основы метода
Классический метод ортогонализации QR-разложения квадратной матрицы (вещественный вариант) довольно прост, однако из-за неустойчивости, проявляющейся в неортогональности получаемых систем, крайне редко применяется на практике.
Пусть имеются линейно независимые векторы [math]\mathbf{a}_1,\;\ldots,\;\mathbf{a}_N[/math]. Пусть оператор проекции вектора [math]\mathbf{a}[/math] на вектор [math]\mathbf{b}[/math] определён следующим образом: [math]\mathbf{proj}_{\mathbf{b}}\,\mathbf{a} = {\langle \mathbf{a}, \mathbf{b} \rangle \over \langle \mathbf{b}, \mathbf{b}\rangle} \mathbf{b} ,[/math]
где [math]\langle \mathbf{a}, \mathbf{b} \rangle[/math] — скалярное произведение векторов [math]\mathbf{a}[/math] и [math]\mathbf{b}[/math].
Скалярное произведение для двух векторов [math]\mathbf{ a= [a_1, a_2, ...,a_k]}[/math] и [math]\mathbf{ b= [b_1, b_2, ..., b_k]}[/math] в k-мерном действительном пространстве определяется как:
- [math]\langle \mathbf{a}, \mathbf{b} \rangle=\sum_{i=1}^k a_ib_i=a_1b_1+a_2b_2+\cdots+ a_kb_k[/math].
Этот оператор проецирует вектор [math]\mathbf{a}[/math] коллинеарно вектору [math]\mathbf{b}[/math].
Ортогональность векторов [math]\mathbf{a}[/math] и [math]\mathbf{b}[/math] достигается на шаге (2).
Классический процесс Грама — Шмидта выполняется следующим образом:
- [math] {\begin{array}{lclr} {\mathbf {b}}_{1}&=&{\mathbf {a}}_{1}&(1)\\ {\mathbf {b}}_{2}&=&{\mathbf {a}}_{2}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{2}&(2)\\ {\mathbf {b}}_{3}&=&{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{3}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{3}&(3)\\ {\mathbf {b}}_{4}&=&{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{1}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{2}}}\,{\mathbf {a}}_{4}-{\mathbf {proj}}_{{{\mathbf {b}}_{3}}}\,{\mathbf {a}}_{4}&(4)\\ &\vdots &&\\{\mathbf {b}}_{N}&=&{\mathbf {a}}_{N}-\displaystyle \sum _{{j=1}}^{{N-1}}{\mathbf {proj}}_{{{\mathbf {b}}_{j}}}\,{\mathbf {a}}_{N}&(N) \end{array}} [/math]
На основе каждого вектора [math]\mathbf{b}_j \;(j = 1 \ldots N)[/math] может быть получен нормированный вектор: [math]\mathbf{e}_j = {\mathbf{b}_j\over \| \mathbf{b}_j \|}[/math] (у нормированного вектора направление будет таким же, как у исходного, а норма — единичной). Норма в формуле - согласованная со скалярным произведением: [math]\| x \| = \sqrt{\langle x, x \rangle}[/math]
Результаты процесса Грама — Шмидта:
[math]\mathbf{b}_1,\;\ldots,\;\mathbf{b}_N[/math] — система ортогональных векторов либо
[math]\mathbf{e}_1,\;\ldots,\;\mathbf{e}_N[/math] — система ортонормированных векторов.
Наиболее используемой на практике формой метода является вариант метода ортогонализации с переортогонализацией.