Участник:Смирнова Александра/Нахождение собственных чисел квадратной матрицы методом QR разложения (3): различия между версиями
Frolov (обсуждение | вклад) |
|||
(не показано 116 промежуточных версий 5 участников) | |||
Строка 1: | Строка 1: | ||
+ | {{Assignment|VadimVV|Frolov}} | ||
{{algorithm | {{algorithm | ||
| name = Нахождение собственных чисел квадратной матрицы методом QR разложения | | name = Нахождение собственных чисел квадратной матрицы методом QR разложения | ||
− | | serial_complexity = <math>N*O(n^ | + | | serial_complexity = <math>O(n^3)+N*O(n^2)</math> |
− | | pf_height = <math>N*O(n)</math> | + | | pf_height = <math>O(n^2)+N*O(n)</math> |
| pf_width = <math>O(n^2)</math> | | pf_width = <math>O(n^2)</math> | ||
| input_data = <math> n^2 </math> | | input_data = <math> n^2 </math> | ||
Строка 8: | Строка 9: | ||
}} | }} | ||
− | Основные авторы описания: [[Участник:Смирнова_Александра|Смирнова А.С.]] | + | Основные авторы описания: |
+ | *[[Участник:Смирнова_Александра|Смирнова А.С.]] - описание теоретической части | ||
+ | *[[Участник:Александра_Киямова|Киямова А.]] - описание программистской части | ||
+ | Содержательно все пункты обсуждались авторами вместе, и их вклад был равным. | ||
+ | |||
---- | ---- | ||
Строка 14: | Строка 19: | ||
Задача нахождения собственных значений и собственных векторов для матрицы <math>A</math> заключается в поиске таких чисел <math>\lambda</math>, которые удовлетворяют уравнению: | Задача нахождения собственных значений и собственных векторов для матрицы <math>A</math> заключается в поиске таких чисел <math>\lambda</math>, которые удовлетворяют уравнению: | ||
− | <math>Ax=\lambda x</math>, при этом, числа <math>\lambda</math> называются собственными значениями, а вектора <math>x</math> - собственными векторами | + | <math style="vertical-align:0%">Ax=\lambda x</math>, при этом, числа <math>\lambda</math> называются собственными значениями, а вектора <math>x</math> - собственными векторами<ref>Ильин В.А., Ким Г.Д. "Линейная алгебра и аналитическая геометрия".</ref>. |
Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм. | Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм. | ||
− | == | + | == Свойства и структура алгоритма == |
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
Строка 24: | Строка 29: | ||
---- | ---- | ||
− | QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел и | + | QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел матрицы. При этом алгоритм позволяет найти и собственные вектора матрицы. Он был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма<ref>[https://en.wikipedia.org/wiki/QR_algorithm Wikipedia: QR-algorithm]</ref>. |
Суть базового QR-алгоритма заключается в итерационном приведении матрицы <math>A</math> к некоторой подобной ей матрице <math>A_N</math> при помощи QR-разложения. Матрица <math>A_N</math> является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц <math>A</math> и <math>A_N</math> их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы <math>A</math> сводится к задаче выведения матрицы <math>A_N</math> и поиска собственных значений для нее, что является тривиальной задачей. | Суть базового QR-алгоритма заключается в итерационном приведении матрицы <math>A</math> к некоторой подобной ей матрице <math>A_N</math> при помощи QR-разложения. Матрица <math>A_N</math> является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц <math>A</math> и <math>A_N</math> их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы <math>A</math> сводится к задаче выведения матрицы <math>A_N</math> и поиска собственных значений для нее, что является тривиальной задачей. | ||
− | Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому | + | Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существует несколько способов ускорить его: |
− | * Перед итерациями привести матрицу <math>A</math> к подобной ей матрице <math>A_H</math>, которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения | + | * Перед итерациями привести матрицу <math>A</math> к подобной ей матрице <math>A_H</math>, которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения. |
− | * Использовать QR-алгоритм со сдвигами | + | * Использовать QR-алгоритм со сдвигами. Это позволит уменьшить количество итераций алгоритма. |
− | + | В дальнейшем, в данной статье под модифицированным алгоритмом будет пониматься алгоритм, использующий сдвиги и матрицу с формой Хессенберга. Под базовым алгоритмом будет пониматься алгоритм, не использующий данные приемы. | |
− | В данной статье будет | ||
=== Математическое описание алгоритма === | === Математическое описание алгоритма === | ||
Строка 42: | Строка 46: | ||
Основой алгоритма является тот факт, что любую вещественную матрицу можно разложить на произведение двух матриц следующего вида: | Основой алгоритма является тот факт, что любую вещественную матрицу можно разложить на произведение двух матриц следующего вида: | ||
− | ::<math>A=QR</math>, где <math>Q</math> - ортогональная матрица (<math>Q^T=Q^{-1}</math>), <math>R</math> - верхняя треугольная матрица | + | ::<math>A=QR</math>, где <math>Q</math> - ортогональная матрица (<math>Q^T=Q^{-1}</math>), <math>R</math> - верхняя треугольная матрица. |
Данное разложение называется QR-разложением. | Данное разложение называется QR-разложением. | ||
− | Есть несколько алгоритмов вычисления QR-разложения матрицы. Кратко опишем их в данной статье. | + | Есть несколько алгоритмов вычисления QR-разложения матрицы<ref>[[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы]]</ref> |
+ | <ref>[[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений) QR-разложения квадратной матрицы]]</ref>. Кратко опишем их в данной статье. | ||
===== Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы ===== | ===== Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы ===== | ||
− | + | :''Основная статья:'' [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы]] | |
− | Суть метода Хаусхолдера заключается в последовательном приведении матрицы <math>A</math> к верхней треугольной форме при помощи домножения ее на так называемые матрицы отражения. Получившаяся треугольная матрица будет искомой матрицей <math>R</math>, а матрица <math>Q</math> будет равна произведению сопряженных матриц отражения. | + | Суть метода Хаусхолдера заключается в последовательном приведении матрицы <math style="vertical-align:0%">A</math> к верхней треугольной форме при помощи домножения ее на так называемые матрицы отражения. Получившаяся треугольная матрица будет искомой матрицей <math style="vertical-align:0%">R</math>, а матрица <math>Q</math> будет равна произведению сопряженных матриц отражения. |
− | На <math>i</math>-ом шаге задача <math>i</math>-ой матрицы отражения заключается в обнулении всех поддиагональных элементов <math>i</math>-го столбца матрицы <math>A</math> (при этом столбцы левее <math>i</math>-го не изменяются). Таким образом, алгоритм состоит из n шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага. | + | На <math style="vertical-align:0%">i</math>-ом шаге задача <math style="vertical-align:0%">i</math>-ой матрицы отражения заключается в обнулении всех поддиагональных элементов <math style="vertical-align:0%">i</math>-го столбца матрицы <math style="vertical-align:0%">A</math> (при этом столбцы левее <math style="vertical-align:0%">i</math>-го не изменяются). Таким образом, алгоритм состоит из <math style="vertical-align:0%">n-1</math> шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага. |
− | Матрица отражения имеет вид <math>E-\frac{1}{\gamma }vv^*</math>, где вектор <math>v</math> вычисляется из текущего <math>i</math>-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов). | + | Матрица отражения имеет вид <math>E-\frac{1}{\gamma }vv^*</math>, где вектор <math>v</math> вычисляется из текущего <math style="vertical-align:0%">i</math>-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов). |
===== Метод Гивенса (вращений) QR-разложения квадратной матрицы ===== | ===== Метод Гивенса (вращений) QR-разложения квадратной матрицы ===== | ||
− | + | :''Основная статья:'' [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений) QR-разложения квадратной матрицы]] | |
− | Суть метода Гивенса заключается в последовательном приведении матрицы <math>A</math> к верхней треугольной форме при помощи домножения ее на так называемые матрицы вращения. Получившаяся треугольная матрица будет искомой матрицей <math>R</math>, а матрица <math>Q</math> будет равна произведению сопряженных матриц вращения. | + | Суть метода Гивенса заключается в последовательном приведении матрицы <math>A</math> к верхней треугольной форме при помощи домножения ее на так называемые матрицы вращения. Получившаяся треугольная матрица будет искомой матрицей <math style="vertical-align:0%">R</math>, а матрица <math>Q</math> будет равна произведению сопряженных матриц вращения. |
На каждом шаге задачей матрицы вращения является обнуление одного поддиагонального элемента. Вначале обнуляются все поддиагональные элементы 1-го столбца, затем 2-го и так далее до <math>(n-1)</math>-го. Таким образом, алгоритм состоит из <math>\frac{n(n-1)}{2}</math> шагов на каждом из которых вычисляется очередная матрица вращения, после чего она применяется к матрице, которая является результатом предыдущего шага. | На каждом шаге задачей матрицы вращения является обнуление одного поддиагонального элемента. Вначале обнуляются все поддиагональные элементы 1-го столбца, затем 2-го и так далее до <math>(n-1)</math>-го. Таким образом, алгоритм состоит из <math>\frac{n(n-1)}{2}</math> шагов на каждом из которых вычисляется очередная матрица вращения, после чего она применяется к матрице, которая является результатом предыдущего шага. | ||
Строка 72: | Строка 77: | ||
Пусть матрица <math>A</math> - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом: | Пусть матрица <math>A</math> - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом: | ||
− | #<math>A_0=A</math> | + | #<math>A_0=A</math>. |
#Пусть имеется матрица <math>A_k</math>, тогда матрица <math>A_{k+1}</math> строится следующим образом: | #Пусть имеется матрица <math>A_k</math>, тогда матрица <math>A_{k+1}</math> строится следующим образом: | ||
− | ::::*Строится QR-разложение: <math>A_k=Q_kR_k</math> | + | ::::*Строится QR-разложение: <math>A_k=Q_kR_k</math>. |
− | ::::*Вычисляется <math>A_{k+1}=R_kQ_k</math> | + | ::::*Вычисляется <math>A_{k+1}=R_kQ_k</math>. |
− | Заметим, что <math>A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k</math> | + | Заметим, что <math>A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k</math>. |
Таким образом матрицы <math>A_{k+1}</math> и <math>A_{k}</math> подобны для <math>\forall k</math>, а значит, в силу транзитивности подобия, все матрицы <math>A_{k}</math> подобны матрице <math>A</math> и имеют одинаковый набор собственных значений. | Таким образом матрицы <math>A_{k+1}</math> и <math>A_{k}</math> подобны для <math>\forall k</math>, а значит, в силу транзитивности подобия, все матрицы <math>A_{k}</math> подобны матрице <math>A</math> и имеют одинаковый набор собственных значений. | ||
==== Сходимость алгоритма ==== | ==== Сходимость алгоритма ==== | ||
− | Предположим, что для <math>\forall m</math> выполнены следующие условия: | + | Предположим, что для <math style="vertical-align:0%">\forall m</math> выполнены следующие условия: |
::1. <math>A=X\Lambda X^{-1}</math>, где <math>\Lambda =\begin{bmatrix} | ::1. <math>A=X\Lambda X^{-1}</math>, где <math>\Lambda =\begin{bmatrix} | ||
\Lambda_1 & 0\\ | \Lambda_1 & 0\\ | ||
0 & \Lambda_2 | 0 & \Lambda_2 | ||
− | \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} </math> | + | \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} </math>. |
− | ::2. <math>\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | >\left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | > 0 </math>, где <math>\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) </math> | + | ::2. <math>\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | >\left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | > 0 </math>, где <math>\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) </math>. |
− | ::3. Ведущая подматрица порядка <math>m</math> в <math>X^{-1}</math> невырождена | + | ::3. Ведущая подматрица порядка <math style="vertical-align:0%">m</math> в <math style="vertical-align:0%">X^{-1}</math> невырождена. |
− | Тогда при <math> k \rightarrow \infty </math> последовательность матриц <math>A_k</math> сходится к матрице с верхней треугольной формой. | + | Тогда при <math style="vertical-align:0%"> k \rightarrow \infty </math> последовательность матриц <math>A_k</math> сходится к матрице с верхней треугольной формой<ref>Тыртышников Е.Е. "Методы численного анализа" — М., Академия, 2007. - 320 c.</ref>. |
− | Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица <math>A_k</math> не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью <math>\varepsilon</math>). Если итерации закончились на шаге <math>N</math>, то числа на диагонали матрицы <math>A_N</math> будут считаться собственными значениями матрицы <math>A</math> | + | Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица <math>A_k</math> не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью <math>\varepsilon</math>). Если итерации закончились на шаге <math>N</math>, то числа на диагонали матрицы <math>A_N</math> будут считаться собственными значениями матрицы <math>A</math>. |
==== Вещественный вариант QR-алгоритма ==== | ==== Вещественный вариант QR-алгоритма ==== | ||
− | Если вещественная матрица <math>A</math> имеет различные вещественные собственные значения, то, как было описано ранее, QR-алгоритм сходится к матрице с верхней треугольной формой, на диагонали которой находятся собственные значения. Однако вещественная матрица может иметь комплексные собственные значения. В данном случае алгоритм будет сходиться не к верхней треугольной матрице, а к блочной верхней треугольной матрице, которая на диагонали содержит блоки 1-го и 2-го порядка. Блоки 1-го порядка содержат различные вещественные собственные значения, блоки 2-го порядка соответствуют парам комплексных сопряженных собственных значений. | + | Если вещественная матрица <math>A</math> имеет различные вещественные собственные значения, то, как было описано ранее, QR-алгоритм сходится к матрице с верхней треугольной формой, на диагонали которой находятся собственные значения. Однако вещественная матрица может иметь комплексные собственные значения. В данном случае алгоритм будет сходиться не к верхней треугольной матрице, а к блочной верхней треугольной матрице, которая на диагонали содержит блоки 1-го и 2-го порядка. Блоки 1-го порядка содержат различные вещественные собственные значения, блоки 2-го порядка соответствуют парам комплексных сопряженных собственных значений<ref>R. Granat, Bo Kagstrom, D. Kressner "LAPACK Working Note #216: A novel parallel QR algorithm for hybrid distributed memory HPC systems".</ref>. |
<math>A_N= | <math>A_N= | ||
Строка 115: | Строка 120: | ||
\vdots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \bullet\\ | \vdots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \bullet\\ | ||
0& \cdots& \cdots& \cdots& \cdots& \cdots& 0& 0& \blacksquare | 0& \cdots& \cdots& \cdots& \cdots& \cdots& 0& 0& \blacksquare | ||
+ | \end{bmatrix}</math>. | ||
+ | |||
+ | В дальнейшем, в данной статье, матрицы, имеющие вышеописанную форму, будут называться квазитреугольными. | ||
+ | |||
+ | ==== Приведение матрицы к форме Хессенберга ==== | ||
+ | |||
+ | :''Основная статья:'' [[Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме]] | ||
+ | |||
+ | Матрицей, имеющей форму Хессенберга, называется такая матрица, у которой все элементы, находящиеся ниже первой поддиагонали, равны нулю (<math>a_{ij}=0</math> при <math>i<j+1</math>). Пример такой матрицы приведен ниже: | ||
+ | |||
+ | <math>\begin{bmatrix} | ||
+ | 1& 2& 3& 4\\ | ||
+ | 2& 5& 6& 7\\ | ||
+ | 0& 3& 8& 9\\ | ||
+ | 0& 0& 4& 1 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
− | В | + | Любую матрицу <math>A</math> можно привести к подобной ей матрице <math>A_H</math>, имеющей форму Хессенберга (в силу подобия данные матрицы будут иметь одинаковые собственные значения). Наличие нулевых элементов в данной матрице позволяет ускорить процесс QR-разложения, причем данное ускорение будет иметь место на каждой итерации алгоритма, т.к. матрица с формой Хессенберга инвариантна относительно QR-итерации. Ускорение можно получить за счет использования модифицированного метода Гивенса(вращений) QR-разложения, который из-за изначального наличия нулевых элементов будет состоять не из <math>\frac{n(n-1)}{2}</math> шагов, а из <math>n-1</math> шагов (будет происходить домножение только на те матрицы вращения <math>T_{ij}</math>, у которых <math>i=j+1</math>). |
+ | <!-- Одним из способов приведения матрицы к форме Хессенберга является преобразование Хаусхолдера<ref>[https://en.wikipedia.org/wiki/Householder_transformation#Tridiagonalization%7C Wikipedia: Householder transformation]</ref>. Данный алгоритм состоит из <math>n-1</math> итераций. Пусть имеется матрица <math>A^{(k)}</math>, тогда для перехода к матрице <math>A^{(k+1)}</math> проделывается следующее: | ||
+ | |||
+ | * Вычисление параметра <math>\alpha</math>: <math>\alpha=-sgn(a_{k+1,k}^{(k)})\sqrt{\sum_{j=k+1}^{n}(a_{j,k}^{(k)})^2}</math> | ||
+ | |||
+ | * Вычисление параметра <math>r</math>: <math>r=\sqrt{\frac{1}{2}(\alpha^2-a_{k+1,k}^{(k)}\alpha )}</math> | ||
+ | |||
+ | * Вычисление вектора <math>v^{(k)}=\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}</math>, где <math>v_{1}^{(k)}=v_{2}^{(k)}=...=v_{k}^{(k)}=0, v_{k+1}^{(k)}=\frac{a_{k+1,k}^{(k)}-\alpha}{2r}</math>, а остальные элементы <math>v_{j}^{(k)}=\frac{a_{jk}^{(k)}}{2r}</math>. | ||
+ | |||
+ | * Вычисление матрицы <math>P^{(k)}</math>: <math>P^{(k)}=E-2v^{(k)}(v^{(k)})^T</math> | ||
+ | |||
+ | * Вычисление матрицы <math>A^{(k+1)}</math>: <math>A^{(k+1)}=P^{(k)}A^{(k)}(P^{(k)})^T</math>. Важно отметить, что форма, которой обладают матрицы <math>P^{(k)}</math>, позволяет свести данную операцию перемножения матриц к менее затратным операциям перемножения матрицы на вектор. --> | ||
+ | |||
+ | Одним из способов приведения матрицы к форме Хессенберга является Метод Хаусхолдера (отражений)<ref>[[Метод_Хаусхолдера_(отражений)_приведения_матрицы_к_хессенберговой_(почти_треугольной)_форме|Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме]]</ref>. Суть метода Хаусхолдера заключается в последовательном приведении матрицы <math style="vertical-align:0%">A</math> к форме Хессенберга при помощи домножения ее на так называемые матрицы отражения. | ||
+ | |||
+ | На <math style="vertical-align:0%">i</math>-ом шаге задача <math style="vertical-align:0%">i</math>-ой матрицы отражения заключается в обнулении поддиагональных элементов <math style="vertical-align:0%">i</math>-го столбца матрицы <math style="vertical-align:0%">A</math> (при этом столбцы левее <math style="vertical-align:0%">i</math>-го не изменяются). Таким образом, алгоритм состоит из <math style="vertical-align:0%">n-2</math> шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага. | ||
+ | |||
+ | Матрица отражения имеет вид <math>E-\frac{1}{\gamma }ww^*</math>, где вектор <math>w</math> вычисляется из текущего <math style="vertical-align:0%">i</math>-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов). | ||
+ | |||
+ | В основной статье "[[Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме]]" данный алгоритм описан более подробно с той лишь разницей, что для QR-алгоритма нет необходимости обнулять наддиагональные элементы, как это сделано в вышеупомянутой статье. | ||
+ | |||
+ | ==== QR-алгоритм со сдвигами ==== | ||
+ | |||
+ | QR-алгоритм со сдвигами позволяет сократить количество итераций, необходимых для сходимости<ref name="bahvalov">Бахвалов Н.С., Жидков Н.П., Кобельков. Г.М. "Численный методы"— 6-е изд. — М. : БИНОМ. Лаборатория знаний, 2008. — 636 с.</ref>. Пусть у нас есть матрица <math>A_k</math>, тогда процесс перехода к матрице <math>A_{k+1}</math> выглядит следующим образом: | ||
+ | |||
+ | * На каждом шаге подбирается число <math>\nu_k</math> и ищется следующее QR-разложение: <math>A_k-\nu_kE=Q_kR_k</math>. | ||
+ | * Вычисляется матрица <math>A_{k+1}</math>: <math>A_{k+1} = R_kQ_k+\nu_kE</math>. | ||
+ | |||
+ | При этом сохраняется свойство подобия матриц <math>A_k</math> и <math>A_{k+1}</math>: | ||
+ | |||
+ | <math>A_{k+1} = R_kQ_k+\nu_kE=Q_{k}^{T}Q_kR_kQ_k+\nu_kE=Q_{k}^{T}(A_k-\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-Q_{k}^{T}(\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-\nu_kE+\nu_kE=Q_{k}^{T}A_kQ_k</math>. | ||
+ | |||
+ | В качестве параметра <math>\nu_k</math> может быть взят последний диагональный элемент матрицы <math>A_k</math>. | ||
+ | <!--===== Подбор параметра <math>\nu_k</math>===== | ||
+ | |||
+ | //TODO--> | ||
=== Вычислительное ядро алгоритма === | === Вычислительное ядро алгоритма === | ||
---- | ---- | ||
+ | ==== Базовый алгоритм ==== | ||
QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации: | QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации: | ||
− | + | # Вычисление QR-разложения матрицы: <math>A_k=Q_kR_k</math>. Существует несколько методов решения данной задачи: | |
− | * [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]] | + | #* [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]]: вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из операций скалярного произведения, необходимых для пересчета матрицы на каждом шаге. |
− | : | + | #* [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]]: вычислительное ядро данного алгоритма состоит из численных арифметических операций, необходимых для вычисления параметров матрицы вращения, и из операций (эквивалентных перемножению комплексных чисел), необходимых для пересчета матрицы на каждом шаге. |
− | * [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]] | + | #[[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|Перемножение]] двух плотных матриц: <math>A_{k+1}=R_kQ_k</math>. |
− | : | ||
− | + | ==== Модифицированный алгоритм ==== | |
+ | Модифицированный QR-алгоритм обладает тремя вычислительными ядрами, первое вычисляется единожды, второе и третье повторяются на каждой итерации: | ||
+ | # Приведение изначальной матрицы к форме Хессенберга: вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из операций скалярного произведения, необходимых для пересчета матрицы на каждом шаге. | ||
+ | # Вычисление QR-разложения матрицы: <math>A_k-\nu_kE=Q_kR_k</math> при помощи модифицированного метода Гивенса (вращений). Описание вычислительного ядра не отличается от приведенного в описании базового алгоритма, единственная разница заключается в значительно меньшем количестве матриц вращения. | ||
+ | # [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|Перемножение]] двух плотных матриц: <math>A_{k+1}-\nu_kE=R_kQ_k</math>. | ||
=== Макроструктура алгоритма === | === Макроструктура алгоритма === | ||
---- | ---- | ||
− | Как уже было | + | Как уже было описано ранее, базовый QR-алгоритм содержит в себе две макрооперации: |
− | + | #Вычисление QR-разложения матрицы: <math>A_k=Q_kR_k</math>. | |
+ | #Перемножение двух плотных матриц: <math>A_{k+1}=R_kQ_k</math>. | ||
− | + | В случае модифицированного QR-алгоритма появляется еще макрооперация приведения матрицы к форме Хессенберга. | |
=== Схема реализации последовательного алгоритма === | === Схема реализации последовательного алгоритма === | ||
---- | ---- | ||
+ | |||
+ | ==== Базовый алгоритм ==== | ||
Опишем необходимый для реализации цикл при помощи псевдокода: | Опишем необходимый для реализации цикл при помощи псевдокода: | ||
− | A - исходная матрица | + | A - исходная матрица. |
− | curA - текущая матрица, на основе которой будет вычисляться QR-разложение на каждом шаге | + | curA - текущая матрица, на основе которой будет вычисляться QR-разложение на каждом шаге. |
− | nextA - новая матрица, полученная после перемножения матриц R и Q | + | nextA - новая матрица, полученная после перемножения матриц R и Q. |
triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. | triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. | ||
difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов). | difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов). | ||
Строка 159: | Строка 221: | ||
findQRdecomposition(curA,Q,R) | findQRdecomposition(curA,Q,R) | ||
nextA = R*Q | nextA = R*Q | ||
+ | } | ||
+ | |||
+ | ==== Модифицированный алгоритм ==== | ||
+ | |||
+ | Опишем необходимый для реализации цикл при помощи псевдокода: | ||
+ | |||
+ | A - исходная матрица. | ||
+ | curA - текущая матрица, на основе которой будет совершаться сдвиг и вычисляться QR-разложение на каждом шаге. | ||
+ | nextA - новая матрица, полученная после перемножения матриц R и Q. | ||
+ | nu - параметр сдвига | ||
+ | shiftA - текущая матрица со сдвигом. | ||
+ | triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. | ||
+ | difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов). | ||
+ | |||
+ | curA = A | ||
+ | nextA = A | ||
+ | '''while''' ( '''not''' (triangular(nextA) & difference(curA,nextA,eps)) ) | ||
+ | { | ||
+ | curA = nextA | ||
+ | nu = computeNu(curA) | ||
+ | shiftA = curA - nu*E | ||
+ | findQRdecomposition(shiftA,Q,R) | ||
+ | nextA = R*Q + nu*E | ||
} | } | ||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
---- | ---- | ||
− | |||
− | + | ==== Базовый алгоритм ==== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | Итого, в сумме получаем <math>O(n^3)</math> - сложность алгоритма на каждой итерации. Если алгоритм остановился на итерации с номером <math>N</math>, то общая сложность алгоритма будет равна <math>N*O(n^3)</math> | + | Подсчитаем сложность одной итерации QR-алгоритма (расчет сложностей для QR-разложения и перемножения матриц представлен в статьях, посвященных данным алгоритмам). |
+ | |||
+ | # QR-разложение матрицы. | ||
+ | #* [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]] имеет сложность <math>\frac{4}{3}n^3</math>. | ||
+ | #* [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]] имеет сложность <math style="vertical-align:0%">2n^3</math>. | ||
+ | # [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|Перемножение двух плотных матриц]] имеет сложность <math style="vertical-align:0%">n^3</math>. | ||
+ | # Проверка матрицы на квазитреугольную форму состоит из набора сравнений элементов с номерами <math>ij</math> (<math>i>j+1</math>) с нулем (таких элементов <math>\frac{(n-2)(n-1)}{2}</math>). Поддиагональные элементы с номерами <math>ij</math> (<math>i=j+1</math>) должны быть проверены на соответствие необходимой квазитреугольной форме. Для этого достаточно для каждого такого элемента проверить следующее условие: <math>a_{i+1,i}==0 \vee a_{i,i-1}==0 \wedge a_{i+2,i+1}==0</math> (либо поддиагональный элемент равен 0, либо, в противном случае, соседние поддиагональные элементы равны 0, чтобы текущий элемент соответствовал блоку 2-го порядка). Таких проверок поддиагональных элементов будет <math>n-1</math>. После данных проверок следует набор логических операций "И" между результатами всех сравнений (таких операций будет <math>\frac{n(n-1)}{2}-1</math>). | ||
+ | # Сравнение новой матрицы с предыдущей состоит из операций вычитания и сравнения для каждой пары ненулевых соответствующих элементов (такие пары имеют номера элементов <math>ij</math> (<math>i \geq j+1</math>), количество таких пар равно <math>\frac{n(n+1)}{2}+(n-1)</math>), а также из набора логических операций "И" между результатами сравнений (таких операций будет <math>\frac{n(n+1)}{2}+(n-1)-1</math>). | ||
+ | |||
+ | Итого, в сумме получаем <math>O(n^3)</math> - сложность алгоритма на каждой итерации. Если алгоритм остановился на итерации с номером <math>N</math>, то общая сложность алгоритма будет равна <math>N*O(n^3)</math>. | ||
+ | |||
+ | ==== Модифицированный алгоритм ==== | ||
+ | |||
+ | Отличия от базового алгоритма заключаются в следующем: | ||
+ | # [[Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме|Метод Хаусхолдера (отражений)]] имеет последовательную сложность <math>O(n^3)</math>. | ||
+ | # QR-разложение матрицы, имеющей форму Хессенберга будет иметь сложность порядка <math>O(n^2)</math><ref name="bahvalov"/>. | ||
+ | |||
+ | Стоит заметить, что вычисление сдвигов по сравнению с другими операциями не обладает высокой сложностью, однако позволяет значительно сократить количество необходимых итераций. | ||
+ | |||
+ | Итого, в сумме получаем <math>O(n^2)</math> - сложность алгоритма на каждой итерации. Сложность всего алгоритма, с учетом приведения матрицы к форме Хессенберга, будет равна <math>O(n^3)+N*O(n^2)</math> | ||
=== Информационный граф === | === Информационный граф === | ||
---- | ---- | ||
+ | ==== Базовый алгоритм ==== | ||
+ | На рисунках 1 и 2 изображен информационный граф QR-алгоритма. Вершины данного графа обозначают следующее: | ||
+ | * '''QR''' - операция QR-разложения матрицы. | ||
+ | * ''' *<sub>M</sub>''' - операция перемножения матриц. | ||
+ | * '''Triang''' - операция проверки матрицы на квазитреугольную форму. | ||
+ | * '''Dif''' - операция проверки различия элементов двух матриц не более чем на некоторое заданное число. | ||
+ | * '''Iter<sub>i</sub>''' - итерация алгоритма | ||
− | + | [[Файл:QR_Alg_Base_All.png|center|frame|Рисунок 1. Информационный граф базового QR-алгоритма]] | |
− | + | [[Файл:QR_Alg_Base_Iter.png|center|frame|Рисунок 2. Информационный граф итерации базового QR-алгоритма]] | |
− | |||
− | |||
− | |||
− | |||
− | [[Файл: | ||
− | Подробные графы операций QR-разложения ([[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]], [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]]) и [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|перемножения]] матриц можно найти в статьях, посвященных этим алгоритмам. Далее рассмотрим информационные графы операций '''Triang''' и '''Dif''' на примере матрицы размера <math>5 \times 5</math>. Графы для других матриц выглядят аналогичным образом. | + | Подробные графы операций QR-разложения ([[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]], [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]]) и [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|перемножения]] матриц можно найти в статьях, посвященных этим алгоритмам. Далее рассмотрим информационные графы операций '''Triang''' (рис.3) и '''Dif''' (рис.4) на примере матрицы размера <math style="vertical-align:0%">5 \times 5</math>. Графы для других матриц выглядят аналогичным образом. |
− | [[Файл:QR_Alg_Graf_Triang.png|center|frame|Информационный граф операции '''Triang''', которая проверяет соответствие квазитреугольной форме]] | + | [[Файл:QR_Alg_Graf_Triang.png|center|frame|Рисунок 3. Информационный граф операции '''Triang''', которая проверяет соответствие квазитреугольной форме]] |
Вершины '''V''' соответствуют операции сравнения с 0. Вершины '''F''' соответствуют проверке поддиагональных элементов на соответствие квазитреугольной форме, которая была описана в предыдущем разделе. Вершины '''&''' соответствуют логической операции "И". | Вершины '''V''' соответствуют операции сравнения с 0. Вершины '''F''' соответствуют проверке поддиагональных элементов на соответствие квазитреугольной форме, которая была описана в предыдущем разделе. Вершины '''&''' соответствуют логической операции "И". | ||
− | [[Файл:QR_Alg_Graf_Dif2.png|center|frame|Информационный граф операции '''Dif''', которая проверяет сходимость ненулевых элементов]] | + | [[Файл:QR_Alg_Graf_Dif2.png|center|frame|Рисунок 4. Информационный граф операции '''Dif''', которая проверяет сходимость ненулевых элементов]] |
Вершины '''-V''' соответствуют операции вычитания и сравнения с 0. Вершины '''&''' соответствуют логической операции "И". | Вершины '''-V''' соответствуют операции вычитания и сравнения с 0. Вершины '''&''' соответствуют логической операции "И". | ||
+ | |||
+ | ==== Модифицированный алгоритм ==== | ||
+ | |||
+ | На рисунках 5 и 6 изображен информационный граф модифицированного QR-алгоритма. Дополнительные вершины для этого графа обозначают следующее: | ||
+ | * '''Shift''' - операция сдвига | ||
+ | * '''H''' - операция приведения матрицы к форме Хессенберга | ||
+ | |||
+ | [[Файл:QR_Alg_Mod_All.png|center|frame|Рисунок 5. Информационный граф модифицированного QR-алгоритма]] | ||
+ | [[Файл:QR_Alg_Mod_Iter.png|center|frame|Рисунок 6. Информационный граф итерации модифицированного QR-алгоритма]] | ||
=== Ресурс параллелизма алгоритма === | === Ресурс параллелизма алгоритма === | ||
---- | ---- | ||
+ | ==== Базовый алгоритм ==== | ||
На макроуровне (который можно увидеть на информационном графе QR-алгоритма) алгоритм не обладает ресурсами параллелизма. Все макрооперации внутри итерации, а также сами итерации выполняются последовательно (за исключением операций '''Triag''' и '''Dif''', которые могут выполняться параллельно). Основной ресурс параллелизма заложен отдельно в каждой из макроопераций. На каждой итерации алгоритм имеет следующие параллельные характеристики: | На макроуровне (который можно увидеть на информационном графе QR-алгоритма) алгоритм не обладает ресурсами параллелизма. Все макрооперации внутри итерации, а также сами итерации выполняются последовательно (за исключением операций '''Triag''' и '''Dif''', которые могут выполняться параллельно). Основной ресурс параллелизма заложен отдельно в каждой из макроопераций. На каждой итерации алгоритм имеет следующие параллельные характеристики: | ||
− | # QR-разложение матрицы (описание ресурсов параллелизма для алгоритмов QR-разложения можно найти в | + | # QR-разложение матрицы (описание ресурсов параллелизма для алгоритмов QR-разложения можно найти в статьях, посвященных этим алгоритмам). |
− | #* [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]] имеет высоту ярусно-параллельной формы <math>O(n^2)</math> и ширину ярусно-параллельной формы <math>O(n)</math> | + | #* [[Метод_Хаусхолдера_(отражений)_QR-разложения_квадратной_матрицы,_вещественный_вариант|Метод Хаусхолдера (отражений)]] имеет высоту ярусно-параллельной формы <math>O(n^2)</math> и ширину ярусно-параллельной формы <math>O(n)</math>. |
− | #* [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]] имеет высоту ярусно-параллельной формы <math>11n-16</math> и ширину ярусно-параллельной формы <math>O(n^2)</math> | + | #* [[Метод_Гивенса_(вращений)_QR-разложения_квадратной_матрицы_(вещественный_вариант)|Метод Гивенса (вращений)]] имеет высоту ярусно-параллельной формы <math>11n-16</math> и ширину ярусно-параллельной формы <math>O(n^2)</math>. |
− | # [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|Перемножение двух плотных матриц]] имеет высоту ярусно-параллельной формы <math>n</math> и ширину ярусно-параллельной формы <math>n^2</math> | + | # [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)|Перемножение двух плотных матриц]] имеет высоту ярусно-параллельной формы <math>n</math> и ширину ярусно-параллельной формы <math style="vertical-align:0%">n^2</math>. |
− | # Проверка матрицы на выходе из итерации | + | # Проверка матрицы на выходе из итерации. |
− | #* Проверка матрицы на квазитреугольную форму состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Для вычисления итогового результата можно использовать метод сдваивания, который дает высоту ярусно-параллельной формы порядка логарифма от количества элементов, над которыми совершается операция. Таким образов высота ярусно-параллельной формы будет равна <math>O(log_2n)</math>. Ширина ярусно-параллельной формы достигается на ярусе | + | #* Проверка матрицы на квазитреугольную форму состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Для вычисления итогового результата можно использовать метод сдваивания, который дает высоту ярусно-параллельной формы порядка логарифма от количества элементов, над которыми совершается операция. Таким образов высота ярусно-параллельной формы будет равна <math>O(log_2n)</math>. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна <math>O(n^2)</math>. |
#* Сравнение новой матрицы с предыдущей состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Высота ярусно-параллельной формы будет равна <math>O(log_2n)</math>. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна <math>O(n^2)</math>. | #* Сравнение новой матрицы с предыдущей состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Высота ярусно-параллельной формы будет равна <math>O(log_2n)</math>. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна <math>O(n^2)</math>. | ||
Таким образом, основной вклад в высоту ярусно-параллельной формы одной итерации вносит операция QR-разложения матрицы и она будет равна <math>O(n)</math>, если использовать метод Гивенса. Ширина ярусно-параллельной формы будет равна <math>O(n^2)</math>. Если алгоритм остановился на итерации с номером <math>N</math>, то параллельные характеристики для всего алгоритма будут равны <math>N*O(n)</math> для высоты и <math>O(n^2)</math> для ширины ярусно-параллельной формы. | Таким образом, основной вклад в высоту ярусно-параллельной формы одной итерации вносит операция QR-разложения матрицы и она будет равна <math>O(n)</math>, если использовать метод Гивенса. Ширина ярусно-параллельной формы будет равна <math>O(n^2)</math>. Если алгоритм остановился на итерации с номером <math>N</math>, то параллельные характеристики для всего алгоритма будут равны <math>N*O(n)</math> для высоты и <math>O(n^2)</math> для ширины ярусно-параллельной формы. | ||
+ | |||
+ | ==== Модифицированный алгоритм ==== | ||
+ | |||
+ | Отличия от базового алгоритма заключаются в следующем: | ||
+ | # Приведение матрицы к форме Хессенберга имеет высоту ярусно-параллельной формы <math>O(n^2)</math> и ширину ярусно-параллельной формы <math>O(n^2)</math>. | ||
+ | # QR-разложение матрицы модифицированным методом Гивенса (вращений) имеет высоту ярусно-параллельной формы <math>O(n)</math> и ширину ярусно-параллельной формы <math>O(n)</math>. | ||
+ | # Операция сдвига (вычитание из диагональных элементов матрицы одного числа) имеет высоту ярусно-параллельной формы <math>O(1)</math> и ширину ярусно-параллельной формы <math>O(n)</math>. | ||
+ | |||
+ | Таким образом, итоговые характеристики всего модифицированного алгоритма будут следующие: высота ярусно-параллельной формы <math>O(n^2)+N*O(n)</math> и ширина ярусно-параллельной формы <math>O(n^2)</math>. | ||
=== Входные и выходные данные алгоритма === | === Входные и выходные данные алгоритма === | ||
Строка 214: | Строка 333: | ||
'''Входные данные''': | '''Входные данные''': | ||
− | :::квадратная вещественная плотная матрица <math>A</math>: <math>A \in \R^{n \times n}</math> | + | :::квадратная вещественная плотная матрица <math>A</math>: <math>A \in \R^{n \times n}</math>. |
'''Объем входных данных''': | '''Объем входных данных''': | ||
− | :::<math>n^2</math> (необходимо хранить все элементы матрицы) | + | :::<math>n^2</math> (необходимо хранить все элементы матрицы). |
'''Выходные данные''': | '''Выходные данные''': | ||
− | :::собственные значения матрицы <math>A</math> | + | :::собственные значения матрицы <math>A</math>. |
'''Объем выходных данных''': | '''Объем выходных данных''': | ||
− | :::<math>n</math> (квадратная матрица размера <math>n \times n</math> имеет ровно <math>n</math> собственных значений при этом некоторые из них могут быть комплексными) | + | :::<math>n</math> (квадратная матрица размера <math>n \times n</math> имеет ровно <math>n</math> собственных значений при этом некоторые из них могут быть комплексными). |
=== Свойства алгоритма === | === Свойства алгоритма === | ||
+ | ---- | ||
+ | *Cоотношение последовательной и параллельной сложности алгоритма квадратично, что дает довольно большой выигрыш. | ||
+ | *Вычислительная мощность, которая показывает, сколько операций приходится на единицу переданных данных, равна <math>\frac{N*O(n^3)}{n^2+n}=N*O(n)</math>, а значит перемещение данных для их обработки не будет составлять большой проблемы. | ||
+ | *Алгоритм является недетерминированным, т.к. заранее неизвестно сколько итераций необходимо совершить до момента сходимости. | ||
+ | *Скорость сходимости алгоритма зависит от собственных значений. Чем ближе по модулю соседние собственные значения, тем меньше скорость сходимости. Этот недостаток призван решить QR-алгоритм со сдвигами. | ||
+ | |||
+ | == Программная реализация алгоритма == | ||
+ | |||
+ | === Особенности реализации последовательного алгоритма === | ||
---- | ---- | ||
− | == | + | === Локальность данных и вычислений === |
+ | ---- | ||
+ | === Возможные способы и особенности параллельной реализации алгоритма === | ||
+ | ---- | ||
=== Масштабируемость алгоритма и его реализации === | === Масштабируемость алгоритма и его реализации === | ||
+ | ---- | ||
+ | Масштабируемость алгоритма (рис.7) исследовалась на основе реализации алгоритма в библиотеке [http://www.netlib.org/scalapack/#_scalapack_version_2_0_0 ScaLAPACK v2.0.0]: функция [http://www.netlib.org/scalapack/explore-html/d3/d3a/pdhseqr_8f.html#a2dbf17fffb167fe38d2a0544bb9fd5db pdhseqr]. Время работы было замерено для различных размеров матрицы, а также различного числа процессоров. | ||
+ | |||
+ | [[Файл:QRPerfomance.png|center|frame|Рисунок 7. Масштабируемость QR-алгоритма]] | ||
+ | |||
+ | При увеличении числа процессоров время работы программы увеличивается при малом размере матрицы, распараллеливание алгоритма неэффективно. Однако при больших размерах матрицы (более <math style="vertical-align:0%"> 10^3\times10^3</math>) время работы параллельной реализации значительно меньше последовательной. | ||
+ | |||
+ | [https://algowiki-project.org/pool/File:QR-Kiyamova-Smirnova.docx Код программы] | ||
+ | |||
+ | Все вычисления были проведены на суперкомпьютере [http://hpc.cs.msu.su/regatta Regatta]. Библиотека [http://www.netlib.org/scalapack/#_scalapack_version_2_0_0 ScaLAPACK v2.0.0] была установлена вручную. | ||
+ | Компиляция проводилась с использованием компилятора mpicxx с опциями -lscalapack и -llapack с указанием полного пути до используемых библиотек. | ||
+ | |||
+ | === Динамические характеристики и эффективность реализации алгоритма === | ||
---- | ---- | ||
+ | === Выводы для классов архитектур === | ||
+ | ---- | ||
=== Существующие реализации алгоритма === | === Существующие реализации алгоритма === | ||
---- | ---- | ||
+ | |||
+ | ==== Последовательные реализации ==== | ||
+ | |||
+ | # LAPACK ([http://netlib.org/lapack/ Linear Algebra PACKage]) — библиотека с открытым исходным кодом, содержащая методы для решения основных задач линейной алгебры. Написана на языке Fortran с использованием библиотеки [http://www.netlib.org/blas/ BLAS] и является развитием пакета LINPACK. Находится в открытом доступе в соответствии с [http://www.netlib.org/lapack/LICENSE.txt модифицированной лицензией BSD], в том числе и для коммерческого использования. | ||
+ | #* Полный алгоритм нахождения собственных значений: функция [http://www.netlib.org/lapack/explore-html/d8/d66/dhseqr_8f_a273e6c6bdb731ed8d6ba3cb060f3f739.html#a273e6c6bdb731ed8d6ba3cb060f3f739 dhseqr]. | ||
+ | #* QR-разложение: функция [http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html#ga3766ea903391b5cf9008132f7440ec7b dgeqrf]. | ||
+ | #* Перемножение матриц: функция [http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html#gaeda3cbd99c8fb834a60a6412878226e1 dgemm]. | ||
+ | # [http://alglib.sources.ru/ ALGLIB] - это кросс-платформенная библиотека численного анализа, поддерживающая несколько языков программирования (C++, C#, Pascal, VBA) и несколько операционных систем (Windows, Linux, Solaris). ALGLIB является свободным программным обеспечением, которое использует двойное лицензирование: оно может быть использовано в соответствии с лицензией GPL (версии 2+), а для использования в коммерческих целях необходимо купить отдельную лицензию. | ||
+ | #* Полный алгоритм нахождения собственных значений: подпрограмма [http://alglib.sources.ru/eigen/nonsymmetric/nonsymmetricevd.php RMatrixEVD]. | ||
+ | #* QR-разложение: подпрограмма [http://alglib.sources.ru/matrixops/qr.php rmatrixqr] реализует QR-разложение для вещественных матриц, [http://alglib.sources.ru/matrixops/qr.php cmatrixqr] – для комплексных матриц. | ||
+ | #* Перемножение матриц: для перемножения матриц ALGLIB использует соответствующую реализацию библиотеки [http://www.netlib.org/blas/ BLAS]. | ||
+ | # [http://eigen.tuxfamily.org/index.php?title=Main_Page Eigen] – библиотека шаблонов для линейной алгебры, написанная на языке C++. Eigen – свободно распространяемое программное обеспечение. Начиная с версии 3.1.1, оно лицензируется MPL2, на ранние версии распространяется действие лицензии LGPL3+. | ||
+ | #* Полный алгоритм нахождения собственных значений: модуль [http://eigen.tuxfamily.org/dox/group__Eigenvalues__Module.html Eigenvalues module]. | ||
+ | #* QR-разложение: модуль [http://eigen.tuxfamily.org/dox-devel/group__QR__Module.html QR module]. | ||
+ | #* Перемножение матриц: [http://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html#title5 операторы * и *=]. | ||
+ | |||
+ | ==== Параллельные реализации ==== | ||
+ | # ScaLAPACK ([http://www.netlib.org/scalapack/ Scalable Linear Algebra PACKage]) — библиотека с открытым исходным кодом, включающая в себя подмножество процедур [http://netlib.org/lapack/ LAPACK], переработанных для использования на MPP-компьютерах. ScaLAPACK разработана с использованием PBLAS и BLACS, и предназначена для вычислений на любом компьютере или кластере поддерживающим MPI или PVM. Библиотека в настоящее время написана на языке Fortran. Находится в открытом доступе в соответствии с [http://www.netlib.org/scalapack/LICENSE модифицированной лицензией BSD], в том числе и для коммерческого использования. | ||
+ | #* Полный алгоритм нахождения собственных значений: функция [http://www.netlib.org/scalapack/explore-html/d3/d3a/pdhseqr_8f.html#a2dbf17fffb167fe38d2a0544bb9fd5db pdhseqr]. | ||
+ | #* QR-разложение: функция [http://www.netlib.org/scalapack/explore-html/da/d85/pdgeqrf_8f.html#ad48b15b5976e51cbc40a0e1ab2720fa5 pdgeqrf]. | ||
+ | #* Перемножение матриц: функция [http://www.netlib.org/scalapack/explore-html/d6/da2/pdgemm___8c.html#a2959b3974ab5e83564517aa1b99d2433 pdgemm]. | ||
+ | # PLAPACK ([http://www.cs.utexas.edu/users/plapack/ Parallel Linear Algebra Package]) — пакет функций LAPACK для параллельного решения задач линейной алгебры. Пакет функций PLAPACK является альтернативой библиотеке [http://www.netlib.org/scalapack/ ScaLAPACK]. Для осуществления межпроцессорных коммуникаций в PLAPACK использован интерфейс передачи сообщений MPI. При передаче сообщений в PLAPACK в основном используются коллективные операции, такие, как обобщенная передача данных от одного процесса всем процессам (MPI_Scatter), обобщенная передача данных от всех процессов одному процессу (MPI_Gather), широковещательная рассылка (MPI_Bcast) и другие. PLAPACK включает интерфейсы для языков Fortran и С. | ||
+ | #* QR-разложение: функция [http://www.cs.utexas.edu/users/plapack/C_Manual/#PLA_QR PLA_QR]. | ||
+ | #* Перемножение матриц: функция [http://www.cs.utexas.edu/users/plapack/C_Manual/#PLA_Gemm PLA_Gemm]. | ||
== Литература == | == Литература == |
Текущая версия на 11:16, 10 декабря 2016
Эта работа успешно выполнена Преподавателю: в основное пространство, в подстраницу Данное задание было проверено и зачтено. Проверено Frolov и VadimVV. |
Нахождение собственных чисел квадратной матрицы методом QR разложения | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3)+N*O(n^2)[/math] |
Объём входных данных | [math] n^2 [/math] |
Объём выходных данных | [math] n [/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]O(n^2)+N*O(n)[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Основные авторы описания:
- Смирнова А.С. - описание теоретической части
- Киямова А. - описание программистской части
Содержательно все пункты обсуждались авторами вместе, и их вклад был равным.
Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких чисел [math]\lambda[/math], которые удовлетворяют уравнению:
[math]Ax=\lambda x[/math], при этом, числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами[1].
Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел матрицы. При этом алгоритм позволяет найти и собственные вектора матрицы. Он был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма[2].
Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.
Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существует несколько способов ускорить его:
- Перед итерациями привести матрицу [math]A[/math] к подобной ей матрице [math]A_H[/math], которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения.
- Использовать QR-алгоритм со сдвигами. Это позволит уменьшить количество итераций алгоритма.
В дальнейшем, в данной статье под модифицированным алгоритмом будет пониматься алгоритм, использующий сдвиги и матрицу с формой Хессенберга. Под базовым алгоритмом будет пониматься алгоритм, не использующий данные приемы.
1.2 Математическое описание алгоритма
1.2.1 QR-разложение матрицы
Основой алгоритма является тот факт, что любую вещественную матрицу можно разложить на произведение двух матриц следующего вида:
- [math]A=QR[/math], где [math]Q[/math] - ортогональная матрица ([math]Q^T=Q^{-1}[/math]), [math]R[/math] - верхняя треугольная матрица.
Данное разложение называется QR-разложением.
Есть несколько алгоритмов вычисления QR-разложения матрицы[3] [4]. Кратко опишем их в данной статье.
1.2.1.1 Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
- Основная статья: Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
Суть метода Хаусхолдера заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы отражения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц отражения.
На [math]i[/math]-ом шаге задача [math]i[/math]-ой матрицы отражения заключается в обнулении всех поддиагональных элементов [math]i[/math]-го столбца матрицы [math]A[/math] (при этом столбцы левее [math]i[/math]-го не изменяются). Таким образом, алгоритм состоит из [math]n-1[/math] шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага.
Матрица отражения имеет вид [math]E-\frac{1}{\gamma }vv^*[/math], где вектор [math]v[/math] вычисляется из текущего [math]i[/math]-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов).
1.2.1.2 Метод Гивенса (вращений) QR-разложения квадратной матрицы
- Основная статья: Метод Гивенса (вращений) QR-разложения квадратной матрицы
Суть метода Гивенса заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы вращения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц вращения.
На каждом шаге задачей матрицы вращения является обнуление одного поддиагонального элемента. Вначале обнуляются все поддиагональные элементы 1-го столбца, затем 2-го и так далее до [math](n-1)[/math]-го. Таким образом, алгоритм состоит из [math]\frac{n(n-1)}{2}[/math] шагов на каждом из которых вычисляется очередная матрица вращения, после чего она применяется к матрице, которая является результатом предыдущего шага.
Матрицы вращения [math]T_{ij}[/math] по ствоей структуре очень близки к единичным матрицам, за исключением четырех элементов: элементы с номерами [math]ii[/math] и [math]jj[/math] содержат некоторое число-параметр [math]c[/math], элементы с номерами [math]ij[/math] и [math]ji[/math] содержат числа-параметры [math]-s[/math] и [math]s[/math] соответственно. Вычисление параметров [math]c[/math] и [math]s[/math] происходит на каждом шаге в зависимости от текущей матрицы и состоит из простых численных арифметических операций. Умножение матрицы вращения на текущую матрицу может быть представлено как последовательное изменение элементов с номерами [math]ik[/math] и [math]kk[/math] для всех столбцов [math]k[/math] находящихся правее столбца [math]i[/math]. Каждое такое изменение по своей структуре эквивалентно операции перемножения двух комплексных чисел.
1.2.2 QR-алгоритм нахождения собственных чисел
Пусть матрица [math]A[/math] - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом:
- [math]A_0=A[/math].
- Пусть имеется матрица [math]A_k[/math], тогда матрица [math]A_{k+1}[/math] строится следующим образом:
- Строится QR-разложение: [math]A_k=Q_kR_k[/math].
- Вычисляется [math]A_{k+1}=R_kQ_k[/math].
Заметим, что [math]A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k[/math].
Таким образом матрицы [math]A_{k+1}[/math] и [math]A_{k}[/math] подобны для [math]\forall k[/math], а значит, в силу транзитивности подобия, все матрицы [math]A_{k}[/math] подобны матрице [math]A[/math] и имеют одинаковый набор собственных значений.
1.2.3 Сходимость алгоритма
Предположим, что для [math]\forall m[/math] выполнены следующие условия:
- 1. [math]A=X\Lambda X^{-1}[/math], где [math]\Lambda =\begin{bmatrix} \Lambda_1 & 0\\ 0 & \Lambda_2 \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} [/math].
- 2. [math]\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | \gt \left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | \gt 0 [/math], где [math]\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) [/math].
- 3. Ведущая подматрица порядка [math]m[/math] в [math]X^{-1}[/math] невырождена.
Тогда при [math] k \rightarrow \infty [/math] последовательность матриц [math]A_k[/math] сходится к матрице с верхней треугольной формой[5].
Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица [math]A_k[/math] не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью [math]\varepsilon[/math]). Если итерации закончились на шаге [math]N[/math], то числа на диагонали матрицы [math]A_N[/math] будут считаться собственными значениями матрицы [math]A[/math].
1.2.4 Вещественный вариант QR-алгоритма
Если вещественная матрица [math]A[/math] имеет различные вещественные собственные значения, то, как было описано ранее, QR-алгоритм сходится к матрице с верхней треугольной формой, на диагонали которой находятся собственные значения. Однако вещественная матрица может иметь комплексные собственные значения. В данном случае алгоритм будет сходиться не к верхней треугольной матрице, а к блочной верхней треугольной матрице, которая на диагонали содержит блоки 1-го и 2-го порядка. Блоки 1-го порядка содержат различные вещественные собственные значения, блоки 2-го порядка соответствуют парам комплексных сопряженных собственных значений[6].
[math]A_N= \begin{bmatrix} \blacksquare& \bullet& \bullet& \cdots& \cdots& \cdots& \cdots& \cdots& \bullet\\ 0& \blacksquare& \blacksquare& \bullet& \ddots& \ddots& \ddots& \ddots& \vdots\\ 0& \blacksquare& \blacksquare& \bullet& \bullet& \ddots& \ddots& \ddots& \vdots\\ \vdots& 0& 0& \blacksquare& \bullet& \bullet& \ddots& \ddots& \vdots\\ \vdots& \ddots& 0& 0& \blacksquare& \bullet& \bullet& \ddots& \vdots\\ \vdots& \ddots& \ddots& 0& 0& \blacksquare& \blacksquare& \ddots& \vdots\\ \vdots& \ddots& \ddots& \ddots& 0& \blacksquare& \blacksquare& \ddots& \bullet\\ \vdots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \bullet\\ 0& \cdots& \cdots& \cdots& \cdots& \cdots& 0& 0& \blacksquare \end{bmatrix}[/math].
В дальнейшем, в данной статье, матрицы, имеющие вышеописанную форму, будут называться квазитреугольными.
1.2.5 Приведение матрицы к форме Хессенберга
- Основная статья: Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме
Матрицей, имеющей форму Хессенберга, называется такая матрица, у которой все элементы, находящиеся ниже первой поддиагонали, равны нулю ([math]a_{ij}=0[/math] при [math]i\lt j+1[/math]). Пример такой матрицы приведен ниже:
[math]\begin{bmatrix} 1& 2& 3& 4\\ 2& 5& 6& 7\\ 0& 3& 8& 9\\ 0& 0& 4& 1 \end{bmatrix}[/math]
Любую матрицу [math]A[/math] можно привести к подобной ей матрице [math]A_H[/math], имеющей форму Хессенберга (в силу подобия данные матрицы будут иметь одинаковые собственные значения). Наличие нулевых элементов в данной матрице позволяет ускорить процесс QR-разложения, причем данное ускорение будет иметь место на каждой итерации алгоритма, т.к. матрица с формой Хессенберга инвариантна относительно QR-итерации. Ускорение можно получить за счет использования модифицированного метода Гивенса(вращений) QR-разложения, который из-за изначального наличия нулевых элементов будет состоять не из [math]\frac{n(n-1)}{2}[/math] шагов, а из [math]n-1[/math] шагов (будет происходить домножение только на те матрицы вращения [math]T_{ij}[/math], у которых [math]i=j+1[/math]).
Одним из способов приведения матрицы к форме Хессенберга является Метод Хаусхолдера (отражений)[7]. Суть метода Хаусхолдера заключается в последовательном приведении матрицы [math]A[/math] к форме Хессенберга при помощи домножения ее на так называемые матрицы отражения.
На [math]i[/math]-ом шаге задача [math]i[/math]-ой матрицы отражения заключается в обнулении поддиагональных элементов [math]i[/math]-го столбца матрицы [math]A[/math] (при этом столбцы левее [math]i[/math]-го не изменяются). Таким образом, алгоритм состоит из [math]n-2[/math] шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага.
Матрица отражения имеет вид [math]E-\frac{1}{\gamma }ww^*[/math], где вектор [math]w[/math] вычисляется из текущего [math]i[/math]-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов).
В основной статье "Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме" данный алгоритм описан более подробно с той лишь разницей, что для QR-алгоритма нет необходимости обнулять наддиагональные элементы, как это сделано в вышеупомянутой статье.
1.2.6 QR-алгоритм со сдвигами
QR-алгоритм со сдвигами позволяет сократить количество итераций, необходимых для сходимости[8]. Пусть у нас есть матрица [math]A_k[/math], тогда процесс перехода к матрице [math]A_{k+1}[/math] выглядит следующим образом:
- На каждом шаге подбирается число [math]\nu_k[/math] и ищется следующее QR-разложение: [math]A_k-\nu_kE=Q_kR_k[/math].
- Вычисляется матрица [math]A_{k+1}[/math]: [math]A_{k+1} = R_kQ_k+\nu_kE[/math].
При этом сохраняется свойство подобия матриц [math]A_k[/math] и [math]A_{k+1}[/math]:
[math]A_{k+1} = R_kQ_k+\nu_kE=Q_{k}^{T}Q_kR_kQ_k+\nu_kE=Q_{k}^{T}(A_k-\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-Q_{k}^{T}(\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-\nu_kE+\nu_kE=Q_{k}^{T}A_kQ_k[/math].
В качестве параметра [math]\nu_k[/math] может быть взят последний диагональный элемент матрицы [math]A_k[/math].
1.3 Вычислительное ядро алгоритма
1.3.1 Базовый алгоритм
QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации:
- Вычисление QR-разложения матрицы: [math]A_k=Q_kR_k[/math]. Существует несколько методов решения данной задачи:
- Метод Хаусхолдера (отражений): вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из операций скалярного произведения, необходимых для пересчета матрицы на каждом шаге.
- Метод Гивенса (вращений): вычислительное ядро данного алгоритма состоит из численных арифметических операций, необходимых для вычисления параметров матрицы вращения, и из операций (эквивалентных перемножению комплексных чисел), необходимых для пересчета матрицы на каждом шаге.
- Перемножение двух плотных матриц: [math]A_{k+1}=R_kQ_k[/math].
1.3.2 Модифицированный алгоритм
Модифицированный QR-алгоритм обладает тремя вычислительными ядрами, первое вычисляется единожды, второе и третье повторяются на каждой итерации:
- Приведение изначальной матрицы к форме Хессенберга: вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из операций скалярного произведения, необходимых для пересчета матрицы на каждом шаге.
- Вычисление QR-разложения матрицы: [math]A_k-\nu_kE=Q_kR_k[/math] при помощи модифицированного метода Гивенса (вращений). Описание вычислительного ядра не отличается от приведенного в описании базового алгоритма, единственная разница заключается в значительно меньшем количестве матриц вращения.
- Перемножение двух плотных матриц: [math]A_{k+1}-\nu_kE=R_kQ_k[/math].
1.4 Макроструктура алгоритма
Как уже было описано ранее, базовый QR-алгоритм содержит в себе две макрооперации:
- Вычисление QR-разложения матрицы: [math]A_k=Q_kR_k[/math].
- Перемножение двух плотных матриц: [math]A_{k+1}=R_kQ_k[/math].
В случае модифицированного QR-алгоритма появляется еще макрооперация приведения матрицы к форме Хессенберга.
1.5 Схема реализации последовательного алгоритма
1.5.1 Базовый алгоритм
Опишем необходимый для реализации цикл при помощи псевдокода:
A - исходная матрица. curA - текущая матрица, на основе которой будет вычисляться QR-разложение на каждом шаге. nextA - новая матрица, полученная после перемножения матриц R и Q. triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов).
curA = A nextA = A while ( not (triangular(nextA) & difference(curA,nextA,eps)) ) { curA = nextA findQRdecomposition(curA,Q,R) nextA = R*Q }
1.5.2 Модифицированный алгоритм
Опишем необходимый для реализации цикл при помощи псевдокода:
A - исходная матрица. curA - текущая матрица, на основе которой будет совершаться сдвиг и вычисляться QR-разложение на каждом шаге. nextA - новая матрица, полученная после перемножения матриц R и Q. nu - параметр сдвига shiftA - текущая матрица со сдвигом. triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов).
curA = A nextA = A while ( not (triangular(nextA) & difference(curA,nextA,eps)) ) { curA = nextA nu = computeNu(curA) shiftA = curA - nu*E findQRdecomposition(shiftA,Q,R) nextA = R*Q + nu*E }
1.6 Последовательная сложность алгоритма
1.6.1 Базовый алгоритм
Подсчитаем сложность одной итерации QR-алгоритма (расчет сложностей для QR-разложения и перемножения матриц представлен в статьях, посвященных данным алгоритмам).
- QR-разложение матрицы.
- Метод Хаусхолдера (отражений) имеет сложность [math]\frac{4}{3}n^3[/math].
- Метод Гивенса (вращений) имеет сложность [math]2n^3[/math].
- Перемножение двух плотных матриц имеет сложность [math]n^3[/math].
- Проверка матрицы на квазитреугольную форму состоит из набора сравнений элементов с номерами [math]ij[/math] ([math]i\gt j+1[/math]) с нулем (таких элементов [math]\frac{(n-2)(n-1)}{2}[/math]). Поддиагональные элементы с номерами [math]ij[/math] ([math]i=j+1[/math]) должны быть проверены на соответствие необходимой квазитреугольной форме. Для этого достаточно для каждого такого элемента проверить следующее условие: [math]a_{i+1,i}==0 \vee a_{i,i-1}==0 \wedge a_{i+2,i+1}==0[/math] (либо поддиагональный элемент равен 0, либо, в противном случае, соседние поддиагональные элементы равны 0, чтобы текущий элемент соответствовал блоку 2-го порядка). Таких проверок поддиагональных элементов будет [math]n-1[/math]. После данных проверок следует набор логических операций "И" между результатами всех сравнений (таких операций будет [math]\frac{n(n-1)}{2}-1[/math]).
- Сравнение новой матрицы с предыдущей состоит из операций вычитания и сравнения для каждой пары ненулевых соответствующих элементов (такие пары имеют номера элементов [math]ij[/math] ([math]i \geq j+1[/math]), количество таких пар равно [math]\frac{n(n+1)}{2}+(n-1)[/math]), а также из набора логических операций "И" между результатами сравнений (таких операций будет [math]\frac{n(n+1)}{2}+(n-1)-1[/math]).
Итого, в сумме получаем [math]O(n^3)[/math] - сложность алгоритма на каждой итерации. Если алгоритм остановился на итерации с номером [math]N[/math], то общая сложность алгоритма будет равна [math]N*O(n^3)[/math].
1.6.2 Модифицированный алгоритм
Отличия от базового алгоритма заключаются в следующем:
- Метод Хаусхолдера (отражений) имеет последовательную сложность [math]O(n^3)[/math].
- QR-разложение матрицы, имеющей форму Хессенберга будет иметь сложность порядка [math]O(n^2)[/math][8].
Стоит заметить, что вычисление сдвигов по сравнению с другими операциями не обладает высокой сложностью, однако позволяет значительно сократить количество необходимых итераций.
Итого, в сумме получаем [math]O(n^2)[/math] - сложность алгоритма на каждой итерации. Сложность всего алгоритма, с учетом приведения матрицы к форме Хессенберга, будет равна [math]O(n^3)+N*O(n^2)[/math]
1.7 Информационный граф
1.7.1 Базовый алгоритм
На рисунках 1 и 2 изображен информационный граф QR-алгоритма. Вершины данного графа обозначают следующее:
- QR - операция QR-разложения матрицы.
- *M - операция перемножения матриц.
- Triang - операция проверки матрицы на квазитреугольную форму.
- Dif - операция проверки различия элементов двух матриц не более чем на некоторое заданное число.
- Iteri - итерация алгоритма
Подробные графы операций QR-разложения (Метод Хаусхолдера (отражений), Метод Гивенса (вращений)) и перемножения матриц можно найти в статьях, посвященных этим алгоритмам. Далее рассмотрим информационные графы операций Triang (рис.3) и Dif (рис.4) на примере матрицы размера [math]5 \times 5[/math]. Графы для других матриц выглядят аналогичным образом.
Вершины V соответствуют операции сравнения с 0. Вершины F соответствуют проверке поддиагональных элементов на соответствие квазитреугольной форме, которая была описана в предыдущем разделе. Вершины & соответствуют логической операции "И".
Вершины -V соответствуют операции вычитания и сравнения с 0. Вершины & соответствуют логической операции "И".
1.7.2 Модифицированный алгоритм
На рисунках 5 и 6 изображен информационный граф модифицированного QR-алгоритма. Дополнительные вершины для этого графа обозначают следующее:
- Shift - операция сдвига
- H - операция приведения матрицы к форме Хессенберга
1.8 Ресурс параллелизма алгоритма
1.8.1 Базовый алгоритм
На макроуровне (который можно увидеть на информационном графе QR-алгоритма) алгоритм не обладает ресурсами параллелизма. Все макрооперации внутри итерации, а также сами итерации выполняются последовательно (за исключением операций Triag и Dif, которые могут выполняться параллельно). Основной ресурс параллелизма заложен отдельно в каждой из макроопераций. На каждой итерации алгоритм имеет следующие параллельные характеристики:
- QR-разложение матрицы (описание ресурсов параллелизма для алгоритмов QR-разложения можно найти в статьях, посвященных этим алгоритмам).
- Метод Хаусхолдера (отражений) имеет высоту ярусно-параллельной формы [math]O(n^2)[/math] и ширину ярусно-параллельной формы [math]O(n)[/math].
- Метод Гивенса (вращений) имеет высоту ярусно-параллельной формы [math]11n-16[/math] и ширину ярусно-параллельной формы [math]O(n^2)[/math].
- Перемножение двух плотных матриц имеет высоту ярусно-параллельной формы [math]n[/math] и ширину ярусно-параллельной формы [math]n^2[/math].
- Проверка матрицы на выходе из итерации.
- Проверка матрицы на квазитреугольную форму состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Для вычисления итогового результата можно использовать метод сдваивания, который дает высоту ярусно-параллельной формы порядка логарифма от количества элементов, над которыми совершается операция. Таким образов высота ярусно-параллельной формы будет равна [math]O(log_2n)[/math]. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна [math]O(n^2)[/math].
- Сравнение новой матрицы с предыдущей состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Высота ярусно-параллельной формы будет равна [math]O(log_2n)[/math]. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна [math]O(n^2)[/math].
Таким образом, основной вклад в высоту ярусно-параллельной формы одной итерации вносит операция QR-разложения матрицы и она будет равна [math]O(n)[/math], если использовать метод Гивенса. Ширина ярусно-параллельной формы будет равна [math]O(n^2)[/math]. Если алгоритм остановился на итерации с номером [math]N[/math], то параллельные характеристики для всего алгоритма будут равны [math]N*O(n)[/math] для высоты и [math]O(n^2)[/math] для ширины ярусно-параллельной формы.
1.8.2 Модифицированный алгоритм
Отличия от базового алгоритма заключаются в следующем:
- Приведение матрицы к форме Хессенберга имеет высоту ярусно-параллельной формы [math]O(n^2)[/math] и ширину ярусно-параллельной формы [math]O(n^2)[/math].
- QR-разложение матрицы модифицированным методом Гивенса (вращений) имеет высоту ярусно-параллельной формы [math]O(n)[/math] и ширину ярусно-параллельной формы [math]O(n)[/math].
- Операция сдвига (вычитание из диагональных элементов матрицы одного числа) имеет высоту ярусно-параллельной формы [math]O(1)[/math] и ширину ярусно-параллельной формы [math]O(n)[/math].
Таким образом, итоговые характеристики всего модифицированного алгоритма будут следующие: высота ярусно-параллельной формы [math]O(n^2)+N*O(n)[/math] и ширина ярусно-параллельной формы [math]O(n^2)[/math].
1.9 Входные и выходные данные алгоритма
Входные данные:
- квадратная вещественная плотная матрица [math]A[/math]: [math]A \in \R^{n \times n}[/math].
Объем входных данных:
- [math]n^2[/math] (необходимо хранить все элементы матрицы).
Выходные данные:
- собственные значения матрицы [math]A[/math].
Объем выходных данных:
- [math]n[/math] (квадратная матрица размера [math]n \times n[/math] имеет ровно [math]n[/math] собственных значений при этом некоторые из них могут быть комплексными).
1.10 Свойства алгоритма
- Cоотношение последовательной и параллельной сложности алгоритма квадратично, что дает довольно большой выигрыш.
- Вычислительная мощность, которая показывает, сколько операций приходится на единицу переданных данных, равна [math]\frac{N*O(n^3)}{n^2+n}=N*O(n)[/math], а значит перемещение данных для их обработки не будет составлять большой проблемы.
- Алгоритм является недетерминированным, т.к. заранее неизвестно сколько итераций необходимо совершить до момента сходимости.
- Скорость сходимости алгоритма зависит от собственных значений. Чем ближе по модулю соседние собственные значения, тем меньше скорость сходимости. Этот недостаток призван решить QR-алгоритм со сдвигами.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
Масштабируемость алгоритма (рис.7) исследовалась на основе реализации алгоритма в библиотеке ScaLAPACK v2.0.0: функция pdhseqr. Время работы было замерено для различных размеров матрицы, а также различного числа процессоров.
При увеличении числа процессоров время работы программы увеличивается при малом размере матрицы, распараллеливание алгоритма неэффективно. Однако при больших размерах матрицы (более [math] 10^3\times10^3[/math]) время работы параллельной реализации значительно меньше последовательной.
Все вычисления были проведены на суперкомпьютере Regatta. Библиотека ScaLAPACK v2.0.0 была установлена вручную. Компиляция проводилась с использованием компилятора mpicxx с опциями -lscalapack и -llapack с указанием полного пути до используемых библиотек.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
2.7.1 Последовательные реализации
- LAPACK (Linear Algebra PACKage) — библиотека с открытым исходным кодом, содержащая методы для решения основных задач линейной алгебры. Написана на языке Fortran с использованием библиотеки BLAS и является развитием пакета LINPACK. Находится в открытом доступе в соответствии с модифицированной лицензией BSD, в том числе и для коммерческого использования.
- ALGLIB - это кросс-платформенная библиотека численного анализа, поддерживающая несколько языков программирования (C++, C#, Pascal, VBA) и несколько операционных систем (Windows, Linux, Solaris). ALGLIB является свободным программным обеспечением, которое использует двойное лицензирование: оно может быть использовано в соответствии с лицензией GPL (версии 2+), а для использования в коммерческих целях необходимо купить отдельную лицензию.
- Полный алгоритм нахождения собственных значений: подпрограмма RMatrixEVD.
- QR-разложение: подпрограмма rmatrixqr реализует QR-разложение для вещественных матриц, cmatrixqr – для комплексных матриц.
- Перемножение матриц: для перемножения матриц ALGLIB использует соответствующую реализацию библиотеки BLAS.
- Eigen – библиотека шаблонов для линейной алгебры, написанная на языке C++. Eigen – свободно распространяемое программное обеспечение. Начиная с версии 3.1.1, оно лицензируется MPL2, на ранние версии распространяется действие лицензии LGPL3+.
- Полный алгоритм нахождения собственных значений: модуль Eigenvalues module.
- QR-разложение: модуль QR module.
- Перемножение матриц: операторы * и *=.
2.7.2 Параллельные реализации
- ScaLAPACK (Scalable Linear Algebra PACKage) — библиотека с открытым исходным кодом, включающая в себя подмножество процедур LAPACK, переработанных для использования на MPP-компьютерах. ScaLAPACK разработана с использованием PBLAS и BLACS, и предназначена для вычислений на любом компьютере или кластере поддерживающим MPI или PVM. Библиотека в настоящее время написана на языке Fortran. Находится в открытом доступе в соответствии с модифицированной лицензией BSD, в том числе и для коммерческого использования.
- PLAPACK (Parallel Linear Algebra Package) — пакет функций LAPACK для параллельного решения задач линейной алгебры. Пакет функций PLAPACK является альтернативой библиотеке ScaLAPACK. Для осуществления межпроцессорных коммуникаций в PLAPACK использован интерфейс передачи сообщений MPI. При передаче сообщений в PLAPACK в основном используются коллективные операции, такие, как обобщенная передача данных от одного процесса всем процессам (MPI_Scatter), обобщенная передача данных от всех процессов одному процессу (MPI_Gather), широковещательная рассылка (MPI_Bcast) и другие. PLAPACK включает интерфейсы для языков Fortran и С.
3 Литература
- ↑ Ильин В.А., Ким Г.Д. "Линейная алгебра и аналитическая геометрия".
- ↑ Wikipedia: QR-algorithm
- ↑ Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
- ↑ Метод Гивенса (вращений) QR-разложения квадратной матрицы
- ↑ Тыртышников Е.Е. "Методы численного анализа" — М., Академия, 2007. - 320 c.
- ↑ R. Granat, Bo Kagstrom, D. Kressner "LAPACK Working Note #216: A novel parallel QR algorithm for hybrid distributed memory HPC systems".
- ↑ Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме
- ↑ 8,0 8,1 Бахвалов Н.С., Жидков Н.П., Кобельков. Г.М. "Численный методы"— 6-е изд. — М. : БИНОМ. Лаборатория знаний, 2008. — 636 с.