Перемножение плотных неособенных матриц (последовательный вещественный вариант)
Основные авторы описания: А.В.Фролов.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Перемножение матриц - одна из базовых задач в алгоритмах линейной алгебры, широко применяется в большом количестве разных методов. Здесь мы рассмотрим умножение [math]C = AB[/math] плотных неособенных матриц (последовательный вещественный вариант), то есть тот вариант, где никак не используются ни специальный вид матрицы, ни ассоциативные свойства операции сложения[1].
1.2 Математическое описание алгоритма
Исходные данные: плотная матрица [math]A[/math] (элементы [math]a_{ij}[/math]), плотная матрица [math]B[/math] (элементы [math]b_{ij}[/math]).
Вычисляемые данные: плотная матрица [math]C[/math] (элементы [math]c_{ij}[/math]).
Формулы метода:
- [math] \begin{align} c_{ij} = \sum_{k = 1}^{n} a_{ik} b_{kj}, \quad i \in [1, m], \quad j \in [1, l]. \end{align} [/math]
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро перемножения плотных неособенных матриц можно составить из множественных (всего их [math]l[/math]) вычислений умножения матрицы [math]A[/math] на столбцы матрицы [math]B[/math], или (при более детальном рассмотрении), из множественных (всего их [math]ml[/math]) скалярных произведений строк матрицы [math]A[/math] на столбцы матрицы [math]B[/math]:
- [math]\sum_{k = 1}^{n} a_{ik} b_{kj}[/math]
в режиме накопления или без него, в зависимости от требований задачи.
1.4 Макроструктура алгоритма
Как уже записано в описании ядра алгоритма, основную часть умножения матриц составляют множественные (всего [math]ml[/math]) вычисления скалярных произведений строк матрицы [math]A[/math] на столбцы матрицы [math]B[/math]
- [math]\sum_{k = 1}^{n} a_{ik} b_{kj}[/math]
в режиме накопления или без него.
1.5 Схема реализации последовательного алгоритма
Для всех [math]i[/math] от [math]1[/math] до [math]m[/math] и для всех [math]j[/math] от [math]1[/math] до [math]l[/math] выполняются
- [math]c_{ij} = \sum_{k = 1}^{n} a_{ik} b_{kj}[/math]
Особо отметим, что вычисления сумм вида [math]\sum_{k = 1}^{n} a_{ik} b_{kj}[/math] производят в режиме накопления прибавлением к текущему (временному) значению вычисляемого элемента матрицы [math]c_{ij}[/math] произведений [math]a_{ik} b_{kj}[/math] для [math]k[/math] от [math]1[/math] до [math]n[/math], c возрастанием [math]k[/math], вначале все элементы инициализируются нулями. При суммировании "по убыванию" общая схема принципиально не отличается и потому нами не рассматривается. Другие порядки выполнения суммирования приводят к изменению параллельных свойств алгоритма и будут рассматриваться нами в отдельных описаниях.
1.6 Последовательная сложность алгоритма
Для умножения двух квадратных матриц порядка [math]n[/math] (т.е. при [math]m=n=l[/math]) в последовательном (наиболее быстром) варианте требуется:
- по [math]n^3[/math] умножений и сложений.
Для умножения матрицы размером [math]m[/math] строк на [math]n[/math] столбцов на матрицу размером [math]m[/math] строк на [math]n[/math] столбцов в последовательном (наиболее быстром) варианте требуется:
- по [math]mnl[/math] умножений и сложений.
При этом использование режима накопления требует совершения умножений и сложений в режиме двойной точности (или использования функции вроде DPROD в Фортране), что ещё больше увеличивает затраты во времени, требуемом для выполнения умножения матриц.
При классификации по последовательной сложности, таким образом, алгоритм умножения матриц относится к алгоритмам с кубической сложностью (в случае неквадратных матриц - с трилинейной).
1.7 Информационный граф
Опишем граф алгоритма как аналитически, так и в виде рисунка.
Граф алгоритма умножения плотных матриц состоит из одной группы вершин, расположенной в целочисленных узлах трёхмерной области, соответствующая ей операция [math]a+bc[/math].
Естественно введённые координаты области таковы:
- [math]i[/math] — меняется в диапазоне от [math]1[/math] до [math]m[/math], принимая все целочисленные значения;
- [math]j[/math] — меняется в диапазоне от [math]1[/math] до [math]l[/math], принимая все целочисленные значения;
- [math]k[/math] — меняется в диапазоне от [math]1[/math] до [math]n[/math], принимая все целочисленные значения.
Аргументы операции следующие:
- [math]a[/math]:
- при [math]k = 1[/math] константа [math]0[/math];
- при [math]k \gt 1[/math] — результат срабатывания операции, соответствующей вершине с координатами [math]i, j, k-1[/math];
- [math]b[/math] — элемент входных данных, а именно [math]a_{ik}[/math];
- [math]c[/math] - элемент входных данных [math]b_{kj}[/math];
Результат срабатывания операции является:
- при [math]k \lt n[/math] - промежуточным данным алгоритма;
- при [math]k = n[/math] - выходным данным [math]c_{ij}[/math].
Интерактивное изображение графа алгоритма без входных и выходных данных для случая перемножения двух квадратных матриц порядка 3 и 4
1.8 Ресурс параллелизма алгоритма
Для алгоритма умножения квадратных матриц порядка n в параллельном варианте требуется последовательно выполнить следующие ярусы:
- по [math]n[/math] ярусов умножений и сложений (в каждом из ярусов — [math]n^2[/math] операций).
Для умножения матрицы размером [math]m[/math] строк на [math]n[/math] столбцов на матрицу размером [math]n[/math] строк на [math]l[/math] столбцов в последовательном (наиболее быстром) варианте требуется:
- по [math]n[/math] ярусов умножений и сложений (в каждом из ярусов — [math]ml[/math] операций).
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения алгоритма в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает некоторое увеличение требуемой памяти.
При классификации по высоте ЯПФ, таким образом, алгоритм умножения матриц относится к алгоритмам с линейной сложностью. При классификации по ширине ЯПФ его сложность также будет квадратичной (для квадратных матриц) или билинейной (для матриц общего вида).
1.9 Входные и выходные данные алгоритма
Входные данные: матрица [math]A[/math] (элементы [math]a_{ij}[/math]), матрица [math]B[/math] (элементы [math]b_{ij}[/math])).
Объём входных данных: [math]mn+nl[/math]
Выходные данные: матрица [math]C[/math] (элементы [math]c_{ij}[/math]).
Объём выходных данных: [math]ml[/math]
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является квадратичным или билинейным (отношение кубической или трилинейной к линейной).
При этом вычислительная мощность алгоритма умножения матриц, как отношение числа операций к суммарному объему входных и выходных данных – линейно.
При этом алгоритм умножения матриц полностью детерминирован. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
В простейшем варианте алгоритм умножения матриц на Фортране можно записать так:
DO I = 1, M
DO J = 1, L
S = 0.
DO K = 1, N
S = S + DPROD(A(I,K), B(K,J))
END DO
C(I, J) = S
END DO
END DO
При этом для реализации режима накопления переменная [math]S[/math] должна быть двойной точности.
2.2 Возможные способы и особенности параллельной реализации алгоритма
2.3 Результаты прогонов
2.4 Выводы для классов архитектур
3 Литература
- ↑ В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.