Участник:AleksLevin/Алгоритм Ланцоша вычисления собственных значений симметричной матрицы для точной арифметики (без переортогонализации): различия между версиями
Строка 1: | Строка 1: | ||
+ | Основные авторы описания: Левин А.Д. (студент, кафедра вычислительных методов, 604 группа) | ||
+ | |||
= Свойства и структура алгоритмов = | = Свойства и структура алгоритмов = | ||
Строка 5: | Строка 7: | ||
Данный алгоритм появился в 1950 г. благодаря стараниям венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матрицы, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых внешних собственных чисел и соответствующих им собственных векторов [1, c.276]. | Данный алгоритм появился в 1950 г. благодаря стараниям венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матрицы, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых внешних собственных чисел и соответствующих им собственных векторов [1, c.276]. | ||
− | Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы | + | Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы <math style="vertical-align:0%;>A</math> соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы <math style="vertical-align:0%;>A</math> [2, с.381]. |
== Математическое описание алгоритма == | == Математическое описание алгоритма == | ||
− | Алгоритм Ланцоша для вычисления собственных значений и собственных векторов матрицы <math style="vertical-align:0%;>A=A^T</math> в точной арифметике: | + | Алгоритм Ланцоша для вычисления собственных значений и собственных векторов симметричной матрицы <math style="vertical-align:0%;>A=A^T</math> в точной арифметике: [2, с.381] |
− | <math>q_1=\frac{b}{\|b\|_2}, \beta_0=0, q_0=0 </math> | + | :<math> |
− | + | \begin{align} | |
+ | q_1 & = \frac{b}{\|b\|_2}, \beta_0=0, q_0=0 \\ | ||
+ | for\ j\ & = 1 & to & k \\ | ||
+ | z & = Aq_j \\ | ||
+ | \alpha_{j}= q^{T}_{j}\,z \\ | ||
+ | z & = z - \alpha_{j}\,q_j - \beta_{j-1}/,q_{j-1} \\ | ||
+ | \end{align} | ||
+ | </math> | ||
== Вычислительное ядро алгоритма == | == Вычислительное ядро алгоритма == |
Версия 23:04, 9 ноября 2016
Основные авторы описания: Левин А.Д. (студент, кафедра вычислительных методов, 604 группа)
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Данный алгоритм появился в 1950 г. благодаря стараниям венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матрицы, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых внешних собственных чисел и соответствующих им собственных векторов [1, c.276].
Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы [math]A[/math] соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы [math]A[/math] [2, с.381].
1.2 Математическое описание алгоритма
Алгоритм Ланцоша для вычисления собственных значений и собственных векторов симметричной матрицы [math]A=A^T[/math] в точной арифметике: [2, с.381]
- [math] \begin{align} q_1 & = \frac{b}{\|b\|_2}, \beta_0=0, q_0=0 \\ for\ j\ & = 1 & to & k \\ z & = Aq_j \\ \alpha_{j}= q^{T}_{j}\,z \\ z & = z - \alpha_{j}\,q_j - \beta_{j-1}/,q_{j-1} \\ \end{align} [/math]
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Парлетт Б. Симметричная проблема собственных значений. Численные методы //М.: Мир. - 1983. - С. 276-294
[2] James W. Demmel Вычислительная линейная алгебра. Теория и приложения //Мир. - 2001. С. 381-391