Участник:AleksLevin/Алгоритм Ланцоша вычисления собственных значений симметричной матрицы для точной арифметики (без переортогонализации): различия между версиями
Строка 7: | Строка 7: | ||
Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков <math style="vertical-align:0%;> n</math>, что к ним нельзя применить прямые методы из-за ограничений по времени и памяти. | Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков <math style="vertical-align:0%;> n</math>, что к ним нельзя применить прямые методы из-за ограничений по времени и памяти. | ||
− | Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых <math style="vertical-align:0%;>k</math> собственных чисел и соответствующих им собственных векторов <span style="color:# | + | Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых <math style="vertical-align:0%;>k</math> собственных чисел и соответствующих им собственных векторов <span style="color:#4169E1">[1, c.276]</span>. |
− | Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы <math style="vertical-align:0%;>A</math> соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих собственных векторов исходной матрицы <math style="vertical-align:0%;>A</math> <span style="color:# | + | Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы <math style="vertical-align:0%;>A</math> соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих собственных векторов исходной матрицы <math style="vertical-align:0%;>A</math> <span style="color:#4169E1">[2, с.381]</span>. |
В данной статье рассматривается вариант алгоритма Ланцоша, в котором опущено влияние ошибок округления на вычислительный процесс, хотя на практике этому посвящается отдельное внимание и существуют различные методы решения данной проблемы, такие как частичная или полная переортогонализация. Этим модифицированным методам посвящены отдельные статьи на данном ресурсе. | В данной статье рассматривается вариант алгоритма Ланцоша, в котором опущено влияние ошибок округления на вычислительный процесс, хотя на практике этому посвящается отдельное внимание и существуют различные методы решения данной проблемы, такие как частичная или полная переортогонализация. Этим модифицированным методам посвящены отдельные статьи на данном ресурсе. |
Версия 12:12, 11 ноября 2016
Основные авторы описания: Левин А.Д. (студент, кафедра вычислительных методов, 604 группа)
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков [math] n[/math], что к ним нельзя применить прямые методы из-за ограничений по времени и памяти.
Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых [math]k[/math] собственных чисел и соответствующих им собственных векторов [1, c.276].
Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы [math]A[/math] соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих собственных векторов исходной матрицы [math]A[/math] [2, с.381].
В данной статье рассматривается вариант алгоритма Ланцоша, в котором опущено влияние ошибок округления на вычислительный процесс, хотя на практике этому посвящается отдельное внимание и существуют различные методы решения данной проблемы, такие как частичная или полная переортогонализация. Этим модифицированным методам посвящены отдельные статьи на данном ресурсе.
1.2 Математическое описание алгоритма
Для лучшего понимания описания, данного в этом пункте статьи, рекомендуется ознакомиться с параграфом 6.6 Методы Крыловского подпространства [2, с.313]. Здесь же дано краткое описание всех переменных, математических операций и необходимый теоретический минимум.
Алгоритм Ланцоша для вычисления [math]k[/math] собственных значений и собственных векторов вещественной симметричной матрицы [math]A=A^T[/math] в точной арифметике [2, с.381]:
[math] \begin{align} q_1 = & b/ \|b\|_2,\; \beta_0 = 0,\; q_0 = 0\\ for \; & j = 1 \; to \; k \\ & z = A\,q_j\\ & \alpha_j = q^T_j z\\ & z = z - \alpha_j q_j - \beta_{j-1}q_{j-1}\\ & \beta_j = \|z\|_2\\ & If \; (\beta_j == 0) \; then\; stop\; the\; algorithm \\ & \; q_{j+1} = z / \beta_j \\ & compute\; eigenvalues\; and \;eigenvectors\;of \;matrix \;\;T_j= Q^T_j A Q\;\;and\;estimate \;the\; errors\\ end \; & for \end{align} [/math]
В продемонстрированном выше алгоритме [math]b[/math] - заданный вещественный вектор. Также полагается известным алгоритм вычисления произведения матрицы [math]A[/math] на вектор [math]x[/math].
Введём матрицу Крылова, определяемую следующим соотношением: [math]K_j = [b,Ab,A^2b,...,A^{j-1}b][/math].
Далее, на практике, матрица [math]K[/math] заменяется матрицей [math]Q[/math], такой, что при любом числе [math]k[/math] линейные оболочки первых [math]k[/math] столбцов в [math]K[/math] и [math]Q[/math] являются одним и тем же подпространством [2, c.315]. Тогда матрица [math]Q[/math], в отличие от матрицы [math]K[/math], хорошо обусловлена и легко обратима. В результате получаем матрицу [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math], столбцы которой ортогональны, являются базисом подпространства Крылова и называются векторами Ланцоша.
В алгоритме Ланцоша вычислению подлежит столько первых столбцов в матрице [math]Q_j[/math], сколько необходимо для получения требуемого приближения к решению [math]A\,x\,=b\,\,(A\,x=\lambda \, x)[/math].
Получение нулевого [math]\beta_j[/math] в итерационном процессе - событие, желательное в том смысле, что оно свидетельствует о том, что найдено некоторое подпространство, являющееся в точности инвариантным. На практике же нулевое и близкие к нулю значения получаются редко [3, стр. 429].
Затем на каждом шаге цикла формируется симметричную трёхдиагональную матрицу [math]T_j = Q^T_j A Q[/math], к которой применяется процесс Рэлея-Ритца для поиска её собственных значений (на практике для поиска этих собственных значений можно использовать любой из специальных методов, изложенных в [3, [math]\S[/math] 8.4]). Эти собственные значения, они же числа Ритца, и полагаются приближёнными собственными значениями исходной матрицы [math]A[/math].
1.3 Вычислительное ядро алгоритма
Вычислительное ядро рассматриваемого алгоритма (наиболее ресурсно-затратная часть алгоритма) - формирование на каждом шаге цикла промежуточного вектора [math]z[/math], вычисляемого по формуле: [math]z = A\,q_j[/math]
1.4 Макроструктура алгоритма
Как уже было упомянуто в данной статье в описании алгоритма, рассматриваемый алгоритм состоит из двух последовательно выполненных алгоритмов: метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедура Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих собственных векторов исходной матрицы.
В первой части алгоритма, где итерационно строятся Крыловское подпространство и трёхдиагональная матрица [math]T_j[/math], можно выделить следующие макрооперации:
- умножение матрицы на вектор (в свою очередь представляет собой умножение вектора на число и сложение векторов);
- вычисление нормы (скалярное произведение векторов + вычисление квадратного корня);
- скалярное произведение векторов;
- сложение векторов и их умножение на вещественные числа
Умножение матрицы на вектор - весьма дешевая и нетривиальная операция, если предполагать, что исходная матрица [math]A[/math] разреженная. Именно она подлежит оптимизации с использованием техник распараллеливания, поскольку она является вычислительным ядром алгоритма, а весь упомянутый процесс построения матрицы [math]T_j[/math] выполняется последовательно.
Вторая часть алгоритма - поиск собственных значений матрицы [math]T_j[/math], в нашем случае с помощью процедуры Рэлея-Ритца, может рассматриваться как отдельная макрооперация.
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Парлетт Б. - Симметричная проблема собственных значений. Численные методы //М.: Мир. - 1983. - С. 276-294
[2] James W. Demmel - Вычислительная линейная алгебра. Теория и приложения //Мир. - 2001. С. 381-391
[3] Голуб Дж., Ван Лоун Ч. - Матричные вычисления//М.: Мир. - 1999. - С. 426-436