Алгоритм Беллмана-Форда: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 103: | Строка 103: | ||
===== Количественная оценка локальности ===== | ===== Количественная оценка локальности ===== | ||
+ | |||
+ | Для обработки одного ребра: | ||
+ | # чтение данных о ребре не должно вызывать промаха по кэшу, так как данные о рёбрах читаются последовательно | ||
+ | # чтение и обновление массива расстояний, напротив, почти наверняка вызовет два промаха по кэшу (по одному для каждого конца ребра) | ||
+ | |||
=== Возможные способы и особенности параллельной реализации алгоритма === | === Возможные способы и особенности параллельной реализации алгоритма === | ||
Программа, реализующая алгоритм поиска кратчайших путей, состоит из двух частей: части, отвечающей за общую координацию вычислений, а так же параллельные вычисления на многоядерных CPU, и GPU части, отвечающей только за вычисления на графическом ускорителе. | Программа, реализующая алгоритм поиска кратчайших путей, состоит из двух частей: части, отвечающей за общую координацию вычислений, а так же параллельные вычисления на многоядерных CPU, и GPU части, отвечающей только за вычисления на графическом ускорителе. |
Версия 01:14, 6 декабря 2016
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Беллмана-Форда[1][2][3] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность [math]O(mn)[/math] против [math]O(m + n\ln n)[/math] у алгоритма Дейкстры), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами.
1.2 Математическое описание алгоритма
Пусть задан граф [math]G = (V, E)[/math] с весами рёбер [math]f(e)[/math] и выделенной вершиной-источником [math]u[/math]. Обозначим через [math]d(v)[/math] кратчайшее расстояние от источника [math]u[/math] до вершины [math]v[/math].
Алгоритм Беллмана-Форда ищет функцию [math]d(v)[/math] как единственное решение уравнения
- [math] d(v) = \min \{ d(w) + f(e) \mid e = (w, v) \in E \}, \quad \forall v \ne u, [/math]
с начальным условием [math]d(u) = 0[/math].
1.3 Вычислительное ядро алгоритма
Основной операцией алгоритма является релаксация ребра: если [math]e = (w, v) \in E[/math] и [math]d(v) \gt d(w) + f(e)[/math], то производится присваивание [math]d(v) \leftarrow d(w) + f(e)[/math].
1.4 Макроструктура алгоритма
Алгоритм последовательно уточняет значения функции [math]d(v)[/math].
- В самом начале производится присваивание [math]d(u) = 0[/math], [math]d(v) = \infty[/math], [math]\forall v \ne u[/math].
- Далее происходит [math]n-1[/math] итерация, в ходе каждой из которых производится релаксация всех рёбер графа.
Структуру можно описать следующим образом:
1. Инициализация: всем вершинам присваивается предполагаемое расстояние [math]t(v)=\infty[/math], кроме вершины-источника, для которой [math]t(u)=0[/math] .
2. Релаксация множества рёбер [math]E[/math]
а) Для каждого ребра [math]e=(v,z) \in E[/math] вычисляется новое предполагаемое расстояние [math]t^' (z)=t(v)+ w(e)[/math].
б) Если [math]t^' (z)\lt t(z)[/math], то происходит присваивание [math]t(z) := t' (z)[/math] (релаксация ребра [math]e[/math] ).
3. Алгоритм производит релаксацию всех рёбер графа до тех пор, пока на очередной итерации происходит релаксация хотя бы одного ребра.
Если на [math]n[/math]-й итерации всё ещё производилась релаксацию рёбер, то в графе присутствует цикл отрицательной длины. Ребро [math]e=(v,z)[/math], лежащее на таком цикле, может быть найдено проверкой следующего условия (проверяется для всех рёбер за линейное время): [math]t(v)+w(e)\lt d(z)[/math]
1.5 Схема реализации последовательного алгоритма
Последовательный алгоритм реализуется следующим псевдокодом:
Входные данные: граф с вершинами V, рёбрами E с весами f(e); вершина-источник u. Выходные данные: расстояния d(v) до каждой вершины v ∈ V от вершины u. for each v ∈ V do d(v) := ∞ d(u) = 0 for i from 1 to |V| - 1: for each e = (w, v) ∈ E: if d(v) > d(w) + f(e): d(v) := d(w) + f(e)
1.6 Последовательная сложность алгоритма
Алгоритм выполняет [math]n-1[/math] итерацию, на каждой из которых происходит релаксация [math]m[/math] рёбер. Таким образом, общий объём работы составляет [math]O(mn)[/math] операций.
Константа в оценке сложности может быть уменьшена за счёт использования следующих двух стандартных приёмов.
- Если на очередной итерации не произошло ни одной успешной релаксации, то алгоритм завершает работу.
- На очередной итерации рассматриваются не все рёбра, а только выходящие из вершин, для которых на прошлой итерации была выполнена успешная релаксация (на первой итерации – только рёбра, выходящие из источника).
1.7 Информационный граф
На рисунке 1 представлен информационный граф алгоритма, демонстрирующий описанные уровни параллелизма. На приведенном далее информационном графе нижний уровень параллелизма обозначен в горизонтальных плоскостях. Множество всех плоскостей представляет собой верхний уровень параллелизма (операции в каждой плоскости могут выполняться параллельно).
Нижний уровень параллелизма на графе алгоритма расположен на уровнях {2 и 3}, соответствующим операциям инициализации массива дистанций (2) и обновления массива c использованием данных массива ребер {3}. Операция {4} - проверка того, были ли изменения на последней итерации и выход из цикла, если таковых не было.
Верхний уровень параллелизма, как уже говорилось, заключается в параллельном подсчете дистанций для различных вершин-источников, и на рисунке отмечен разными плоскостями.
1.8 Ресурс параллелизма алгоритма
При использовании атомарных операций для вычисления минимума релаксация рёбер может производится параллельно. В этом случае потребуется [math]O(n)[/math] шагов при использовании [math]O(m)[/math] процессоров.
Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Беллмана-Форда.
1.9 Входные и выходные данные алгоритма
Входные данные: взвешенный граф [math](V, E, W)[/math] ([math]n[/math] вершин [math]v_i[/math] и [math]m[/math] рёбер [math]e_j = (v^{(1)}_{j}, v^{(2)}_{j})[/math] с весами [math]f_j[/math]), вершина-источник [math]u[/math].
Объём входных данных: [math]O(m + n)[/math].
Выходные данные (возможные варианты):
- для каждой вершины [math]v[/math] исходного графа – последнее ребро [math]e^*_v = (w, v)[/math], лежащее на кратчайшем пути от вершины [math]u[/math] к [math]v[/math], или соответствующая вершина [math]w[/math];
- для каждой вершины [math]v[/math] исходного графа – суммарный вес [math]f^*(v)[/math] кратчайшего пути от от вершины [math]u[/math] к [math]v[/math].
Объём выходных данных: [math]O(n)[/math].
1.10 Свойства алгоритма
Алгоритм может распознавать наличие отрицательных циклов в графе. Ребро [math]e = (v, w)[/math] лежит на таком цикле, если вычисленные алгоритмом кратчайшие расстояния [math]d(v)[/math] удовлетворяют условию
- [math] d(v) + f(e) \lt d(w), [/math]
где [math]f(e)[/math] – вес ребра [math]e[/math]. Условие может быть проверено для всех рёбер графа за время [math]O(m)[/math].
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
В ходе исполнения алгоритма данные о рёбрах читаются последовательно (идеальная локальность), однако чтение и обновление вектора расстояний зависит от структуры графа и обычно является случайным (локальность отсутствует).
2.2.1.2 Количественная оценка локальности
Для обработки одного ребра:
- чтение данных о ребре не должно вызывать промаха по кэшу, так как данные о рёбрах читаются последовательно
- чтение и обновление массива расстояний, напротив, почти наверняка вызовет два промаха по кэшу (по одному для каждого конца ребра)
2.3 Возможные способы и особенности параллельной реализации алгоритма
Программа, реализующая алгоритм поиска кратчайших путей, состоит из двух частей: части, отвечающей за общую координацию вычислений, а так же параллельные вычисления на многоядерных CPU, и GPU части, отвечающей только за вычисления на графическом ускорителе.
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
Проведём исследование масштабируемости параллельной реализации алгоритма Беллмана-Форда согласно методике. Исследование проводилось на суперкомпьютере "Ломоносов-2 Суперкомпьютерного комплекса Московского университета.
Набор и границы значений изменяемых параметров запуска реализации алгоритма:
- число процессоров [1 : 28] с шагом 1;
- размер графа [2^20 : 2^27].
Проведем отдельные исследования сильной масштабируемости вширь реализации алгоритма Беллмана-Форда.
Производительность определена как TEPS (от англ. Traversed Edges Per Second), то есть число ребер графа, который алгоритм обрабатывает в секунду. С помощью данной метрики можно сравнивать производительность для различных размеров графа, оценивая, насколько понижается эффективность обработки графа при увеличении его размера.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
bellman_ford_shortest
). - Python: NetworkX (функция
bellman_ford
). - Java: JGraphT (класс
BellmanFordShortestPath
).