Участник:Смирнова Александра/Нахождение собственных чисел квадратной матрицы методом QR разложения (3): различия между версиями
Строка 101: | Строка 101: | ||
=== Вычислительное ядро алгоритма === | === Вычислительное ядро алгоритма === | ||
+ | ---- | ||
QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации: | QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации: |
Версия 11:52, 13 октября 2016
Нахождение собственных чисел квадратной матрицы методом QR разложения | |
Последовательный алгоритм | |
Последовательная сложность | - |
Объём входных данных | [math] n^2 [/math] |
Объём выходных данных | [math] n [/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | - |
Ширина ярусно-параллельной формы | - |
Основные авторы описания: Смирнова А.С., Киямова А.
Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких чисел [math]\lambda[/math], которые удовлетворяют уравнению:
[math]Ax=\lambda x[/math], при этом, числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами
Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм.
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритма
1.1 Общее описание алгоритма
QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел и собственных векторов матрицы. Был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма.
Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.
Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существуют несколько способов ускорить его:
- Перед итерациями привести матрицу [math]A[/math] к подобной ей матрице [math]A_H[/math], которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения
- Использовать QR-алгоритм со сдвигами
В данной статье будет рассмотрен только базовый QR-алгоритм.
1.2 Математическое описание алгоритма
1.2.1 QR-разложение матрицы
Основой алгоритма является тот факт, что любую вещественную матрицу можно разложить на произведение двух матриц следующего вида:
- [math]A=QR[/math], где [math]Q[/math] - ортогональная матрица ([math]Q^T=Q^{-1}[/math]), [math]R[/math] - верхняя треугольная матрица
Данное разложение называется QR-разложением.
Есть несколько алгоритмов вычисления QR-разложения матрицы. Кратко опишем их в данной статье.
1.2.1.1 Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
- Основная статья: Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
Суть метода Хаусхолдера заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы отражения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц отражения.
На [math]i[/math]-ом шаге задача [math]i[/math]-ой матрицы отражения заключается в обнулении всех поддиагональных элементов [math]i[/math]-го столбца матрицы [math]A[/math] (при этом столбцы левее [math]i[/math]-го не изменяются). Таким образом, алгоритм состоит из n шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага.
Матрица отражения имеет вид [math]E-\frac{1}{\gamma }vv^*[/math], где вектор [math]v[/math] вычисляется из текущего [math]i[/math]-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов).
1.2.1.2 Метод Гивенса (вращений) QR-разложения квадратной матрицы
- Основная статья: Метод Гивенса (вращений) QR-разложения квадратной матрицы
Суть метода Гивенса заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы вращения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц вращения.
На каждом шаге задачей матрицы вращения является обнуление одного поддиагонального элемента. Вначале обнуляются все поддиагональные элементы 1-го столбца, затем 2-го и так далее до [math](n-1)[/math]-го. Таким образом, алгоритм состоит из [math]\frac{n(n-1)}{2}[/math] шагов на каждом из которых вычисляется очередная матрица вращения, после чего она применяется к матрице, которая является результатом предыдущего шага.
Матрицы вращения [math]T_{ij}[/math] по ствоей структуре очень близки к единичным матрицам, за исключением четырех элементов: элементы с номерами [math]ii[/math] и [math]jj[/math] содержат некоторое число-параметр [math]c[/math], элементы с номерами [math]ij[/math] и [math]ji[/math] содержат числа-параметры [math]-s[/math] и [math]s[/math] соответственно. Вычисление параметров [math]c[/math] и [math]s[/math] происходит на каждом шаге в зависимости от текущей матрицы и состоит из простых численных арифметических операций. Умножение матрицы вращения на текущую матрицу может быть представлено как последовательное изменение элементов с номерами [math]ik[/math] и [math]kk[/math] для всех столбцов [math]k[/math] находящихся правее столбца [math]i[/math]. Каждое такое изменение по своей структуре эквивалентно операции перемножения двух комплексных чисел.
1.2.2 QR-алгоритм нахождения собственных чисел
Пусть матрица [math]A[/math] - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом:
- [math]A_0=A[/math]
- Пусть имеется матрица [math]A_k[/math], тогда матрица [math]A_{k+1}[/math] строится следующим образом:
- Строится QR-разложение: [math]A_k=Q_kR_k[/math]
- Вычисляется [math]A_{k+1}=R_kQ_k[/math]
Заметим, что [math]A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k[/math]
Таким образом матрицы [math]A_{k+1}[/math] и [math]A_{k}[/math] подобны для [math]\forall k[/math], а значит, в силу транзитивности подобия, все матрицы [math]A_{k}[/math] подобны матрице [math]A[/math] и имеют одинаковый набор собственных значений.
1.2.3 Сходимость алгоритма
Предположим, что для [math]\forall m[/math] выполнены следующие условия:
- 1. [math]A=X\Lambda X^{-1}[/math], где [math]\Lambda =\begin{bmatrix} \Lambda_1 & 0\\ 0 & \Lambda_2 \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} [/math]
- 2. [math]\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | \gt \left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | \gt 0 [/math], где [math]\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) [/math]
- 3. Ведущая подматрица порядка [math]m[/math] в [math]X^{-1}[/math] невырождена
Тогда при [math] k \rightarrow \infty [/math] последовательность матриц [math]A_k[/math] сходится к матрице с верхней треугольной формой.
Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица [math]A_k[/math] не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью [math]\varepsilon[/math]). Если итерации закончились на шаге [math]N[/math], то числа на диагонали матрицы [math]A_N[/math] будут считаться собственными значениями матрицы [math]A[/math]
1.3 Вычислительное ядро алгоритма
QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации:
1. Вычисление QR-разложения матрицы: [math]A_k=Q_kR_k[/math]. Существует несколько методов решения данной задачи:
- Вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из опреаций скалярного произведения, необходимых для пересчета матрицы на каждом шаге.
- Вычислительное ядро данного алгоритма состоит из численных арифметических операций, необходимых для вычисления параметров матрицы вращения, и из операций (эквивалентных перемножению комплексных чисел), необходимых для пересчета матрицы на каждом шаге.
2. Перемножение двух плотных матриц: [math]A_{k+1}=R_kQ_k[/math]
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные:
- квадратная вещественная плотная матрица [math]A[/math]: [math]A \in \R^{n \times n}[/math]
Объем входных данных:
- [math]n^2[/math] (необходимо хранить все элементы матрицы)
Выходные данные:
- собственные значения матрицы [math]A[/math]
Объем выходных данных:
- [math]n[/math] (квадратная матрица размера [math]n \times n[/math] имеет ровно [math]n[/math] собственных значений при этом некоторые из них могут быть комплексными)