Участник:Denemmy/Partitioning Around Medoids (Алгоритм): различия между версиями
Перейти к навигации
Перейти к поиску
Denemmy (обсуждение | вклад) |
Denemmy (обсуждение | вклад) |
||
Строка 13: | Строка 13: | ||
=== Схема реализации последовательного алгоритма === | === Схема реализации последовательного алгоритма === | ||
− | '' | + | ''Псевдокод алгоритма'': |
− | 1 | + | 1 функция PAM(D, k, tmax=100): |
− | 2 <span style="color:#408080"># | + | 2 <span style="color:#408080"># D - матрица расстояний, k - число кластеров, tmax - маскимальное число итераций</span> |
− | 3 | + | 3 выполнить фазу BUILD, получить множество метоидов M и множество не-метоидов L |
− | 4 | + | 4 вычислить значение целевой функции F |
− | 5 | + | 5 для t = 0..tmax-1: |
− | 6 | + | 6 выполнить фазу SWAP, вычислить значение целевой функции F' |
− | 7 | + | 7 delta = F' - F |
− | 8 | + | 8 если delta > 0: |
− | 9 | + | 9 обновить множества M и L |
− | 10 | + | 10 F = F' |
− | 11 | + | 11 иначе: |
− | 12 | + | 12 выйти из цикла |
− | 13 | + | 13 вернуть М |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Последовательная сложность алгоритма=== | === Последовательная сложность алгоритма=== |
Версия 11:47, 15 октября 2016
Авторы: Галеев Д.Ф, Запутляев И.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Кластеризация - это задача из области машинного обучения, которая заключается в том, что нужно выделить некоторое число групп в исходном множестве, в каждой из которых содержатся схожие по некоторой метрике элементы.
Partitioning Around Medoids (PAM) - это одна из реализаций алгоритма кластеризации k-medoids. PAM использует жадный алгоритм, который может не найти оптимального решения, однако он гораздо быстрее полного перебора.
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
Псевдокод алгоритма:
1 функция PAM(D, k, tmax=100):
2 # D - матрица расстояний, k - число кластеров, tmax - маскимальное число итераций
3 выполнить фазу BUILD, получить множество метоидов M и множество не-метоидов L
4 вычислить значение целевой функции F
5 для t = 0..tmax-1:
6 выполнить фазу SWAP, вычислить значение целевой функции F'
7 delta = F' - F
8 если delta > 0:
9 обновить множества M и L
10 F = F'
11 иначе:
12 выйти из цикла
13 вернуть М