Участник:Пискунов Константин/ Алгоритм кластеризации категориальных данных (Clustering with sLOPE, CLOPE): различия между версиями
Перейти к навигации
Перейти к поиску
Final (обсуждение | вклад) |
Final (обсуждение | вклад) |
||
Строка 14: | Строка 14: | ||
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
− | + | Задачи кластеризации больших массивов категорийных данных весьма актуальна для систем анализа данных. Категорийные данные встречаются в любых областях: производство, коммерция, маркетинг, медицина… Категорийные данные включают в себя и так называемые транзакционные данные: чеки в супермаркетах, логи посещений веб-ресурсов. Сюда же относится анализ и классификация текстовых документов (Text Mining). | |
− | |||
− | |||
=== Математическое описание алгоритма === | === Математическое описание алгоритма === |
Версия 13:59, 25 октября 2016
Алгоритм CLOPE | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(N*k*A)[/math] |
Объём входных данных | [math]N*A+1[/math] |
Объём выходных данных | [math]N[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]O(N*A)[/math] |
Ширина ярусно-параллельной формы | [math]O(N*k*A)[/math] |
Основные авторы описания: К.А.Пискунов
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Задачи кластеризации больших массивов категорийных данных весьма актуальна для систем анализа данных. Категорийные данные встречаются в любых областях: производство, коммерция, маркетинг, медицина… Категорийные данные включают в себя и так называемые транзакционные данные: чеки в супермаркетах, логи посещений веб-ресурсов. Сюда же относится анализ и классификация текстовых документов (Text Mining).