Участник:AleksLevin/Алгоритм Ланцоша вычисления собственных значений симметричной матрицы для точной арифметики (без переортогонализации): различия между версиями
Строка 5: | Строка 5: | ||
== Общее описание алгоритма == | == Общее описание алгоритма == | ||
− | Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков <math>n</math>, что к ним нельзя применить прямые методы из-за ограничений по времени и памяти. | + | Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков <math style="vertical-align:0%;>n</math>, что к ним нельзя применить прямые методы из-за ограничений по времени и памяти. |
− | Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых <math>k</math> собственных чисел и соответствующих им собственных векторов [1, c.276]. | + | Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых <math style="vertical-align:0%;>k</math> собственных чисел и соответствующих им собственных векторов [1, c.276]. |
Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы <math style="vertical-align:0%;>A</math> соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы <math style="vertical-align:0%;>A</math> [2, с.381]. | Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы <math style="vertical-align:0%;>A</math> соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы <math style="vertical-align:0%;>A</math> [2, с.381]. |
Версия 21:33, 10 ноября 2016
Основные авторы описания: Левин А.Д. (студент, кафедра вычислительных методов, 604 группа)
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Данный алгоритм появился в 1950 г. и носит имя венгерского физика и математика Корнелия Ланцоша (венг. Lánczos Kornél). Алгоритм Ланцоша относится к итерационным методам вычисления собственных значений для матриц столь больших порядков [math]n[/math], что к ним нельзя применить прямые методы из-за ограничений по времени и памяти.
Сам Ланцош указывал, что его метод предназначен для отыскания нескольких собственных векторов симметричных матриц, хотя к методу сразу было обращено внимание, как к способу приведения всей матрицы к трёхдиагональному виду. Двадцатью годами позже канадский математик Крис Пэж показал, что, несмотря на чувствительность к округлениям, алгоритм Ланцоша - эффективное средство вычисления некоторых [math]k[/math] собственных чисел и соответствующих им собственных векторов [1, c.276].
Алгоритм Ланцоша для вычисления собственных значений симметричной матрицы [math]A[/math] соединяет в себе метод Ланцоша для построения последовательности подпространств Крылова и ортонормированных векторов Ланцоша и процедуру Рэлея-Ритца получения оптимальных приближений собственных значений и соответствующих векторов исходной матрицы [math]A[/math] [2, с.381].
В данной статье рассматривается вариант алгоритма Ланцоша, в котором опущено влияние ошибок округления на вычислительный процесс, хотя на практике этому посвящается отдельное внимание и существуют различные методы решения данной проблемы.
1.2 Математическое описание алгоритма
Для лучшего понимания описания, данного в этом пункте, рекомендуется ознакомиться с параграфом 6.6 Методы Крыловского подпространства из книги [2]. Здесь же будет дано краткое описание всех переменных, действий и необходимый теоретический минимум. Алгоритм Ланцоша для вычисления собственных значений и собственных векторов вещественной симметричной матрицы [math]A=A^T[/math] в точной арифметике: [2, с.381]
- [math] \begin{align} q_1 & = \frac{b}{\|b\|_2}, \beta_0=0, q_0=0 \\ &for\ j\ & = 1 & to & k \\ z & = Aq_j \\ \alpha_{j}= q^{T}_{j}\,z \\ z & = z - \alpha_{j}\,q_j - \beta_{j-1}/,q_{j-1} \\ \end{align} [/math]
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Парлетт Б. Симметричная проблема собственных значений. Численные методы //М.: Мир. - 1983. - С. 276-294
[2] James W. Demmel Вычислительная линейная алгебра. Теория и приложения //Мир. - 2001. С. 381-391