Участник:Vvnikolaev/Решето Эратосфена: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 41: Строка 41:
  
 
== Информационный граф ==
 
== Информационный граф ==
Это очень важный раздел описания. Именно здесь можно показать (увидеть) как устроена параллельная структура алгоритма, для чего приводится описание и изображение его информационного графа ([[глоссарий#Граф алгоритма|''графа алгоритма'']] <ref name="VVVVVV">Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с. </ref>). Для рисунков с изображением графа будут составлены рекомендации по их формированию, чтобы все информационные графы, внесенные в энциклопедию, можно было бы воспринимать и интерпретировать одинаково. Дополнительно можно привести полное параметрическое  описание графа в терминах покрывающих функций <ref name="VVVVVV" />.
+
Информационный граф рассматриваемого алгоритма:
 
+
[[Файл:Graph_eratosthenes_sieve.png|thumb|center|]]
Интересных вариантов для отражения информационной структуры алгоритмов много. Для каких-то алгоритмов нужно показать максимально подробную структуру, а иногда важнее макроструктура. Много информации несут разного рода проекции информационного графа, выделяя его регулярные составляющие и одновременно скрывая несущественные детали. Иногда оказывается полезным показать последовательность в изменении графа при изменении значений внешних переменных  (например, размеров матриц): мы часто ожидаем "подобное" изменение информационного графа, но это изменение не всегда очевидно на практике. 
 
 
 
В целом, задача изображения графа алгоритма весьма нетривиальна. Начнем с того, что это потенциально бесконечный граф, число вершин и дуг которого определяется значениями внешних переменных, а они могут быть весьма и весьма велики. В такой ситуации, как правило, спасают упомянутые выше соображения подобия, делающие графы для разных значений внешних переменных "похожими": почти всегда достаточно привести лишь один граф небольшого размера, добавив, что графы для остальных значений будут устроены "точно также". На практике, увы, не всегда все так просто, и здесь нужно быть аккуратным.
 
 
 
Далее, граф алгоритма - это потенциально многомерный объект. Наиболее естественная система координат для размещения вершин и дуг информационного графа опирается на структуру вложенности циклов в реализации алгоритма. Если глубина вложенности циклов не превышает трех, то и граф размещается в привычном трехмерном пространстве, однако для более сложных циклических конструкций с глубиной вложенности 4 и больше необходимы специальные методы представления и изображения графов.
 
 
 
В данном разделе AlgoWiki могут использоваться многие интересные возможности, которые еще подлежат обсуждению: возможность повернуть граф при его отображении на экране компьютера для выбора наиболее удобного угла обзора, разметка вершин по типу соответствующим им операций, отражение [[глоссарий#Ярусно-параллельная форма графа алгоритма|''ярусно-параллельной формы графа'']] и другие. Но в любом случае нужно не забывать главную задачу данного раздела - показать информационную структуру алгоритма так, чтобы стали понятны все его ключевые особенности, особенности параллельной структуры, особенности множеств дуг, участки регулярности и, напротив, участки с недерминированной структурой, зависящей от входных данных.
 
 
 
На рис.1 показана информационная структура алгоритма умножения матриц, на рис.2 - информационная структура одного из вариантов алгоритма решения систем линейных алгебраических уравнений с блочно-двухдиагональной матрицей.
 
 
 
[[file:Fig1.svg|thumb|center|300px|Рис.1. Информационная структура алгоритма умножения матриц]]
 
[[file:Fig2.svg|thumb|center|300px|Рис.2. Информационная структура одного из вариантов алгоритма решения систем линейных алгебраических уравнений с блочно-двухдиагональной матрицей]]
 
  
 
== Ресурс параллелизма алгоритма ==
 
== Ресурс параллелизма алгоритма ==

Версия 15:51, 30 ноября 2016

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Решето́ Эратосфе́на — алгоритм нахождения всех простых чисел до некоторого целого числа [math]n[/math]. Приписывается древнегреческому математику Эратосфену Киренскому (откуда и название). Алгоритм проходит список всех чисел от [math]2[/math] до [math]n[/math] и на каждом шаге убирает часть чисел, не являющихся простыми. Таким образом происходит фильтрация («решето» в названии).

1.2 Математическое описание алгоритма

Пусть требуется найти все простые числа от [math]2[/math] до [math]n[/math]. Алгоритм состоит из следующих шагов:

  1. Выписываются подряд все натуральные числа от [math]2[/math] до [math]n[/math]
  2. Положим [math]p = 2[/math]
  3. Зачеркиваются числа от [math]2p[/math] до [math]n[/math] с шагом [math]p[/math] (то есть все числа от [math]2[/math] до [math]n[/math], кратные [math]p[/math])
  4. Ищется первое не зачеркнутое число в списке, превышающие [math]p[/math], и это значение присваивается переменной [math]p[/math]
  5. Повторяются шаги 3 и 4 пока возможно

На практике на шаге 3 зачеркивать числа можно начиная с [math]p^2[/math], и, соответственно алгоритм заканчивает свою работу при [math]p^2 \gt n[/math].

1.3 Вычислительное ядро алгоритма

Основное время работы приходится на шаг №3 алгоритма. Можно показать, что сложность составляет [math]O(nlog(log(n)))[/math].

1.4 Макроструктура алгоритма

Алгоритм можно разбить на 2 части:

  1. Первая часть — создается булев массив длины n и заполняется единицами
  2. Вторая часть — последовательно рассматривается каждое, еще не помеченное число, и с помощью него производится фильтрация бо́льших чисел

1.5 Схема реализации последовательного алгоритма

Псевдокод вычислительного ядра алгоритма:

Вход: натуральное число n

Пусть A — булев массив, индексируемый числами от 2 до n, изначально заполненный значениями true.

 для i := 2, 3, 4, ..., пока i2n:
  если A[i] = true:
    для j := i2, i2 + i, i2 + 2i, ..., пока jn:
      A[j] := false

Выход: числа i, для которых A[i] = true.

1.6 Последовательная сложность алгоритма

Сложность алгоритма складывается из двух составляющих. Первое — выписывание всех чисел от [math]2[/math] до [math]n[/math]. Это, очевидно, делается за [math]O(n)[/math]. Вторая составляющая — повторение шагов 3 и 4 — вычислительное ядро алгоритма. Сложность этой части составляет [math]O(nlog(log(n)))[/math]. Строгое доказательство этого факта можно найти в книге Hardy и Wright «An Introduction to the Theory of Numbers»[1].

1.7 Информационный граф

Информационный граф рассматриваемого алгоритма:

Graph eratosthenes sieve.png

1.8 Ресурс параллелизма алгоритма

Вычислительное ядро алгоритма можно распараллелить, но не полностью. Разобьем все натуральные числа [math]\{2, \dots, n\}[/math] на 2 множества — [math]\{2, \dots, \sqrt n\}[/math] и [math]\{\sqrt n + 1\dots, n\}[/math]. Поиск простых чисел на первом множестве распараллелить нельзя, а на втором — можно (различия заключаются в том, что числа из второго множества не будут проверяться в качестве делителей — они все больше [math] \sqrt n [/math]). Поэтому проверка на простоту для первого множества будет выполняться на каждом потоке, а второе можно разбить на [math]p[/math] частей ([math]p[/math] — количество процессов) и проверять каждую часть на простоту отдельно. Так как первая часть при больших [math]n[/math] значительно меньше второй, то можно предположить, что параллельное выполнение даст хороший прирост к скорости.

1.9 Входные и выходные данные алгоритма

Входные данные алгоритма — одно число [math]n[/math], до которого нужно найти все простые числа. На выходе алгоритм выдает либо булев массив длины [math]n[/math], отражающий для каждого натурального числа, является ли оно простым, либо список простых чисел от [math]2[/math] до [math]n[/math] (что конкретно — зависит от реализации и не имеет особого значения).

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

Задача данного раздела - показать пределы масштабируемости алгоритма на различных платформах. Очень важный раздел. Нужно выделить, описать и оценить влияние точек барьерной синхронизации, глобальных операций, операций сборки/разборки данных, привести оценки или провести исследование сильной и слабой масштабируемости алгоритма и его реализаций.

Масштабируемость алгоритма определяет свойства самого алгоритма безотносительно конкретных особенностей используемого компьютера. Она показывает, насколько параллельные свойства алгоритма позволяют использовать возможности растущего числа процессорных элементов. Масштабируемость параллельных программ определяется как относительно конкретного компьютера, так и относительно используемой технологии программирования, и в этом случае она показывает, насколько может вырасти реальная производительность данного компьютера на данной программе, записанной с помощью данной технологии программирования, при использовании бóльших вычислительных ресурсов (ядер, процессоров, вычислительных узлов).

Ключевой момент данного раздела заключается в том, чтобы показать реальные параметры масштабируемости программы для данного алгоритма на различных вычислительных платформах в зависимости от числа процессоров и размера задачи [2]. При этом важно подобрать такое соотношение между числом процессоров и размером задачи, чтобы отразить все характерные точки в поведении параллельной программы, в частности, достижение максимальной производительности, а также тонкие эффекты, возникающие, например, из-за блочной структуры алгоритма или иерархии памяти.

На рис.5. показана масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи. На графике хорошо видны области с большей производительностью, отвечающие уровням кэш-памяти.

Рис.5 Масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Для многих пар алгоритм+компьютер уже созданы хорошие реализации, которыми можно и нужно пользоваться на практике. Данный раздел предназначен для того, чтобы дать ссылки на основные существующие последовательные и параллельные реализации алгоритма, доступные для использования уже сейчас. Указывается, является ли реализация коммерческой или свободной, под какой лицензией распространяется, приводится местоположение дистрибутива и имеющихся описаний. Если есть информация об особенностях, достоинствах и/или недостатках различных реализаций, то это также нужно здесь указать. Хорошими примерами реализации многих алгоритмов являются MKL, ScaLAPACK, PETSc, FFTW, ATLAS, Magma и другие подобные библиотеки.

3 Литература

  1. Hardy and Wright "An Introduction to the Theory of Numbers, p. 349
  2. Антонов А.С., Теплов А.М. О практической сложности понятия масштабируемости параллельных программ// Высокопроизводительные параллельные вычисления на кластерных системах (HPC 2014): Материалы XIV Международной конференции -Пермь: Издательство ПНИПУ, 2014. С. 20-27.