Разложение Холецкого (метод квадратного корня): различия между версиями
[выверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) (Отклонено последнее 1 текстовое изменение - как сделать, чтобы ссылка была одна и та же в разных местах, а в списке не множилась?) |
Frolov (обсуждение | вклад) |
||
Строка 344: | Строка 344: | ||
− | Для проведения экспериментов использовалась реализация разложения Холецкого, представленная в пакете SCALAPACK библиотеки Intel MKL (метод pdpotrf). Все результаты получены на суперкомпьютере «Ломоносов»<ref | + | Для проведения экспериментов использовалась реализация разложения Холецкого, представленная в пакете SCALAPACK библиотеки Intel MKL (метод pdpotrf). Все результаты получены на суперкомпьютере «Ломоносов»<ref name="Lom" \>. Использовались процессоры Intel Xeon X5570 с пиковой производительностью в 94 Гфлопс, а также компилятор Intel с опцией –O2. |
На рисунках показана эффективность реализации разложения Холецкого (случай использования нижних треугольников матриц) для разного числа процессов и размерности матрицы 80000, запуск проводился на 256 процессах. | На рисунках показана эффективность реализации разложения Холецкого (случай использования нижних треугольников матриц) для разного числа процессов и размерности матрицы 80000, запуск проводился на 256 процессах. | ||
Версия 14:44, 3 июля 2015
Разложение Холецкого | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3)[/math] |
Объём входных данных | [math]\frac{n (n + 1)}{2}[/math] |
Объём выходных данных | [math]\frac{n (n + 1)}{2}[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]O(n)[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Основные авторы описания: А.В.Фролов, Вад.В.Воеводин (раздел 2.2), А.М.Теплов (разделы 2.4, 2.5)
Содержание
- 1 Описание свойств и структуры алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Существующие реализации алгоритма
- 3 Литература
1 Описание свойств и структуры алгоритма
1.1 Общее описание алгоритма
Разложение Холецкого впервые предложено французским офицером и математиком Андре-Луи Холецким в конце Первой Мировой войны, незадолго до его гибели в бою в августе 1918 г. Идея этого разложения была опубликована в 1924 г. его сослуживцем[1]. Потом оно было использовано поляком Т. Банашевичем[2][3] в 1938 г. В советской математической литературе называется также методом квадратного корня[4][5][6]; название связано с характерными операциями, отсутствующими в родственном разложении Гаусса.
Первоначально разложение Холецкого использовалось исключительно для плотных симметричных положительно определенных матриц. В настоящее время его использование гораздо шире. Оно может быть применено также, например, к эрмитовым матрицам. Для повышения производительности вычислений часто применяется блочная версия разложения.
Для разреженных матриц разложение Холецкого также широко применяется в качестве основного этапа прямого метода решения линейных систем. В этом случае используют специальные упорядочивания для уменьшения ширины профиля исключения, а следовательно и уменьшения количества арифметических операций. Другие упорядочивания используются для выделения независимых блоков вычислений при работе на системах с параллельной организацией.
Варианты разложения Холецкого нашли успешные применения и в итерационных методах для построения переобусловливателей разреженных симметричных положительно определенных матриц. В неполном треугольном разложении («по позициям») элементы переобусловливателя вычисляются только в заранее заданных позициях, например, в позициях ненулевых элементов исходной матрицы (так называемое разложение IC0). Для получения же более точного разложения применяется приближение, в котором фильтрация малых элементов производится «по значениям». В зависимости от используемого порога фильтрации можно получить более точное, но и более заполненное разложение. Существует и алгоритм разложения второго порядка точности[7]. В нём при таком же заполнении множителей разложения удается улучшить точность. Для такого разложения в параллельном режиме используется специальный вариант аддитивного переобуславливания на основе разложения второго порядка[8].
На этой странице представлено исходное разложение Холецкого с новых позиций нашего суперкомпьютерного века. Приведено описание конкретной версии разложения Холецкого — для плотных вещественных симметричных положительно определённых матриц, но структура для ряда других версий, например, для комплексного случая, почти такая же, различия состоят в замене большинства вещественных операций на комплексные. Список остальных основных вариантов разложения можно посмотреть на странице Метод Холецкого (нахождение симметричного треугольного разложения).
Используется для разложения положительно определённых эрмитовых (в вещественном случае - симметрических) матриц в виде [math]A = L L^*[/math] ([math]L[/math] — нижняя треугольная матрица) или в виде [math]A = U^* U[/math] ([math]U[/math] — верхняя треугольная матрица ; эти разложения совершенно эквивалентны друг другу по вычислениям и различаются только способом представления данных). Он заключается в реализации формул для элементов матрицы [math]L[/math], получающихся из вышеприведённого равенства единственным образом. Получило широкое распространение благодаря следующим особенностям.
1.1.1 Симметричность и положительная определённость матрицы
Симметричность матрицы позволяет хранить и вычислять только чуть больше половины её элементов, что почти вдвое экономит как необходимые для вычислений объёмы памяти, так и количество операций в сравнении с, например, разложением по методу Гаусса. При этом альтернативное (без вычисления квадратных корней) LU-разложение, использующее симметрию матрицы, всё же несколько быстрее метода Холецкого (не использует извлечение квадратных корней), но требует хранения всей матрицы. Благодаря тому, что разлагаемая матрица не только симметрична, но и положительно определена, её LU-разложения, в том числе и разложение методом Холецкого, имеют наименьшее эквивалентное возмущение из всех известных разложений матриц.
1.1.2 Режим накопления
Алгоритм позволяет использовать так называемый режим накопления, обусловленный тем, что значительную часть вычислений составляют вычисления скалярных произведений.
1.2 Математическое описание
Исходные данные: положительно определённая симметрическая матрица [math]A[/math] (элементы [math]a_{ij}[/math]).
Вычисляемые данные: нижняя треугольная матрица [math]L[/math] (элементы [math]l_{ij}[/math]).
Формулы метода:
- [math] \begin{align} l_{11} & = \sqrt{a_{11}}, \\ l_{j1} & = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n], \\ l_{ii} & = \sqrt{a_{ii} - \sum_{p = 1}^{i - 1} l_{ip}^2}, \quad i \in [2, n], \\ l_{ji} & = \left (a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp} \right ) / l_{ii}, \quad i \in [2, n - 1], j \in [i + 1, n]. \end{align} [/math]
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
В ряде реализаций деление на диагональный элемент выполняется в два этапа: вычисление [math]\frac{1}{l_{ii}}[/math] и затем умножение на него всех (видоизменённых) [math]a_{ji}[/math] . Здесь мы этот вариант алгоритма не рассматриваем. Заметим только, что он имеет худшие параллельные характеристики, чем представленный.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательной версии метода Холецкого можно составить из множественных (всего их [math]\frac{n (n - 1)}{2}[/math]) вычислений скалярных произведений строк матрицы:
- [math]\sum_{p = 1}^{i - 1} l_{ip} l_{jp}[/math]
в режиме накопления или без него, в зависимости от требований задачи. Во многих последовательных реализациях упомянутый способ представления не используется. Дело в том, что в них вычисление сумм типа
- [math]a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp}[/math]
в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений
- [math]a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp}[/math]
в режиме накопления или без него.
Тем не менее, в популярных зарубежных реализациях точечного метода Холецкого, в частности, в библиотеках LINPACK и LAPACK, основанных на BLAS, используются именно вычисления скалярных произведений в виде вызова соответствующих подпрограмм BLAS (конкретно — функции SDOT). На последовательном уровне это влечёт за собой дополнительную операцию суммирования на каждый из [math]\frac{n (n + 1)}{2}[/math] вычисляемый элемент матрицы [math]L[/math] и некоторое замедление работы программы (о других следствиях рассказано ниже в разделе «Существующие реализации алгоритма»). Поэтому в данных вариантах ядром метода Холецкого будут вычисления этих скалярных произведений.
1.4 Макроструктура алгоритма
Как записано и в описании ядра алгоритма, основную часть метода составляют множественные (всего [math]\frac{n (n - 1)}{2}[/math]) вычисления сумм
- [math]a_{ji}-\sum_{p=1}^{i-1}l_{ip} l_{jp}[/math]
в режиме накопления или без него.
1.5 Описание схемы реализации последовательного алгоритма
Последовательность исполнения метода следующая:
1. [math]l_{11}= \sqrt{a_{11}}[/math]
2. [math]l_{j1}= \frac{a_{j1}}{l_{11}}[/math] (при [math]j[/math] от [math]2[/math] до [math]n[/math]).
Далее для всех [math]i[/math] от [math]2[/math] до [math]n[/math] по нарастанию выполняются
3. [math]l_{ii} = \sqrt{a_{ii} - \sum_{p = 1}^{i - 1} l_{ip}^2}[/math] и
4. (кроме [math]i = n[/math]): [math]l_{ji} = \left (a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp} \right ) / l_{ii}[/math] (для всех [math]j[/math] от [math]i + 1[/math] до [math]n[/math]).
После этого (если [math]i \lt n[/math]) происходит переход к шагу 3 с бо́льшим [math]i[/math].
Особо отметим, что вычисления сумм вида [math]a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp}[/math] в обеих формулах производят в режиме накопления вычитанием из [math]a_{ji}[/math] произведений [math]l_{ip} l_{jp}[/math] для [math]p[/math] от [math]1[/math] до [math]i - 1[/math], c нарастанием [math]p[/math].
1.6 Последовательная сложность алгоритма
Для разложения матрицы порядка n методом Холецкого в последовательном (наиболее быстром) варианте требуется:
- [math]n[/math] вычислений квадратного корня,
- [math]\frac{n(n-1)}{2}[/math] делений,
- [math]\frac{n^3-n}{6}[/math] сложений (вычитаний),
- [math]\frac{n^3-n}{6}[/math] умножений.
Умножения и сложения (вычитания) составляют основную часть алгоритма.
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности (или использования функции вроде DPROD в Фортране), что ещё больше увеличивает долю умножений и сложений/вычитаний во времени, требуемом для выполнения метода Холецкого.
При классификации по последовательной сложности, таким образом, метод Холецкого относится к алгоритмам с кубической сложностью.
1.7 Информационный граф
Опишем граф алгоритма[9][10][11] как аналитически, так и в виде рисунка.
Граф алгоритма состоит из трёх групп вершин, расположенных в целочисленных узлах трёх областей разной размерности.
Первая группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию SQRT. Единственная координата каждой из вершин [math]i[/math] меняется в диапазоне от [math]1[/math] до [math]n[/math], принимая все целочисленные значения.
Аргумент этой функции
- при [math]i = 1[/math] — элемент входных данных, а именно [math]a_{11}[/math];
- при [math]i \gt 1[/math] — результат срабатывания операции, соответствующей вершине из третьей группы, с координатами [math]i - 1[/math], [math]i[/math], [math]i - 1[/math].
Результат срабатывания операции является выходным данным [math]l_{ii}[/math].
Вторая группа вершин расположена в двумерной области, соответствующая ей операция [math]a / b[/math]. Естественно введённые координаты области таковы:
- [math]i[/math] — меняется в диапазоне от [math]1[/math] до [math]n-1[/math], принимая все целочисленные значения;
- [math]j[/math] — меняется в диапазоне от [math]i+1[/math] до [math]n[/math], принимая все целочисленные значения.
Аргументы операции следующие:
- [math]a[/math]:
- при [math]i = 1[/math] — элементы входных данных, а именно [math]a_{j1}[/math];
- при [math]i \gt 1[/math] — результат срабатывания операции, соответствующей вершине из третьей группы, с координатами [math]i - 1, j, i - 1[/math];
- [math]b[/math] — результат срабатывания операции, соответствующей вершине из первой группы, с координатой [math]i[/math].
Результат срабатывания операции является выходным данным [math]l_{ji}[/math].
Третья группа вершин расположена в трёхмерной области, соответствующая ей операция [math]a - b * c[/math]. Естественно введённые координаты области таковы:
- [math]i[/math] — меняется в диапазоне от [math]2[/math] до [math]n[/math], принимая все целочисленные значения;
- [math]j[/math] — меняется в диапазоне от [math]i[/math] до [math]n[/math], принимая все целочисленные значения;
- [math]p[/math] — меняется в диапазоне от [math]1[/math] до [math]i - 1[/math], принимая все целочисленные значения.
Аргументы операции следующие:
- [math]a[/math]:
- при [math]p = 1[/math] элемент входных данных [math]a_{ji}[/math];
- при [math]p \gt 1[/math] — результат срабатывания операции, соответствующей вершине из третьей группы, с координатами [math]i, j, p - 1[/math];
- [math]b[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]p, i[/math];
- [math]c[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]p, j[/math];
Результат срабатывания операции является промежуточным данным алгоритма.
Описанный граф можно посмотреть на рисунке, выполненном для случая [math]n = 4[/math]. Здесь вершины первой группы обозначены жёлтым цветом и буквосочетанием sq, вершины второй — зелёным цветом и знаком деления, третьей — красным цветом и буквой f. Вершины, соответствующие операциям, производящим выходные данные алгоритма, выполнены более крупно. Дублирующие друг друга дуги даны как одна. На первом изображении показан граф алгоритма согласно классическому определению , на втором к графу алгоритма добавлены вершины , соответствующие входным данным ( обозначены синим цветом ) и выходным данным ( обозначены розовым цветом ).
1.8 Описание ресурса параллелизма алгоритма
Для разложения матрицы порядка [math]n[/math] методом Холецкого в параллельном варианте требуется последовательно выполнить следующие ярусы:
- [math]n[/math] ярусов с вычислением квадратного корня (единичные вычисления в каждом из ярусов),
- [math]n - 1[/math] ярус делений (в каждом из ярусов линейное количество делений, в зависимости от яруса — от [math]1[/math] до [math]n - 1[/math]),
- по [math]n - 1[/math] ярусов умножений и сложений/вычитаний (в каждом из ярусов — квадратичное количество операций, от [math]1[/math] до [math]\frac{n^2 - n}{2}[/math].
Таким образом, в параллельном варианте, в отличие от последовательного, вычисления квадратных корней и делений будут определять довольно значительную долю требуемого времени. При реализации на конкретных архитектурах наличие в отдельных ярусах ЯПФ отдельных вычислений квадратных корней может породить и другие проблемы. Например, при реализации на ПЛИСах остальные вычисления (деления и тем более умножения и сложения/вычитания) могут быть конвейеризованы, что даёт экономию и по ресурсам на программируемых платах; вычисления же квадратных корней из-за их изолированности приведут к занятию ресурсов на платах, которые будут простаивать большую часть времени. Таким образом, общая экономия в 2 раза, из-за которой метод Холецкого предпочитают в случае симметричных задач тому же методу Гаусса, в параллельном случае уже имеет место вовсе не по всем ресурсам, и главное - не по требуемому времени.
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения метода Холецкого в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает увеличение требуемой памяти почти в 2 раза.
При классификации по высоте ЯПФ, таким образом, метод Холецкого относится к алгоритмам со сложностью [math]O(n)[/math]. При классификации по ширине ЯПФ его сложность будет [math]O(n^2)[/math].
1.9 Описание входных и выходных данных
Входные данные: плотная матрица [math]A[/math] (элементы [math]a_{ij}[/math]). Дополнительные ограничения:
- [math]A[/math] – симметрическая матрица, т. е. [math]a_{ij}= a_{ji}, i, j = 1, \ldots, n[/math].
- [math]A[/math] – положительно определённая матрица, т. е. для любых ненулевых векторов [math]\vec{x}[/math] выполняется [math]\vec{x}^T A \vec{x} \gt 0[/math].
Объём входных данных: [math]\frac{n (n + 1)}{2}[/math] (в силу симметричности достаточно хранить только диагональ и над/поддиагональные элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом. Например, в библиотеке, реализованной в НИВЦ МГУ, матрица A хранилась в одномерном массиве длины [math]\frac{n (n + 1)}{2}[/math] по строкам своего нижнего треугольника.
Выходные данные: нижняя треугольная матрица [math]L[/math] (элементы [math]l_{ij}[/math]).
Объём выходных данных: [math]\frac{n (n + 1)}{2}[/math] (в силу треугольности достаточно хранить только ненулевые элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом. Например, в той же библиотеке, созданной в НИВЦ МГУ, матрица [math]L[/math] хранилась в одномерном массиве длины [math]\frac{n (n + 1)}{2}[/math] по строкам своей нижней части.
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является квадратичным (отношение кубической к линейной).
При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь линейна.
При этом алгоритм почти полностью детерминирован, это гарантируется теоремой о единственности разложения. Использование другого порядка выполнения ассоциативных операций может привести к накоплению ошибок округления, однако это влияние в используемых вариантах алгоритма не так велико, как, скажем, отказ от использования режима накопления.
Дуги информационного графа, исходящие из вершин, соответствующих операциям квадратного корня и деления, образуют пучки т. н. рассылок линейной мощности (то есть степень исхода этих вершин и мощность работы с этими данными — линейная функция от порядка матрицы и координат этих вершин). При этом естественно наличие в этих пучках «длинных» дуг. Остальные дуги локальны.
Наиболее известной является компактная укладка графа — его проекция на треугольник матрицы, который перевычисляется укладываемыми операциями. При этом «длинные» дуги можно убрать, заменив более дальнюю пересылку комбинацией нескольких ближних (к соседям).
Эквивалентное возмущение [math]M[/math] у метода Холецкого всего вдвое больше, чем возмущение [math]\delta A[/math], вносимое в матрицу при вводе чисел в компьютер: [math] ||M||_{E} \leq 2||\delta A||_{E} [/math]
Это явление обусловлено положительной определённостью матрицы. Среди всех используемых разложений матриц это наименьшее из эквивалентных возмущений.
2 Программная реализация
2.1 Особенности реализации последовательного алгоритма
В простейшем (без перестановок суммирования) варианте метод Холецкого на Фортране можно записать так:
DO I = 1, N
S = A(I,I)
DO IP=1, I-1
S = S - DPROD(A(I,IP), A(I,IP))
END DO
A(I,I) = SQRT (S)
DO J = I+1, N
S = A(J,I)
DO IP=1, I-1
S = S - DPROD(A(I,IP), A(J,IP))
END DO
A(J,I) = S/A(I,I)
END DO
END DO
При этом для реализации режима накопления переменная [math]S[/math] должна быть двойной точности.
Отдельно следует обратить внимание на используемую в такой реализации функцию DPROD. Её появление как раз связано с тем, как математики могли использовать режим накопления вычислений. Дело в том, что, как правило, при выполнении умножения двух чисел с плавающей запятой сначала результат получается с удвоенными длинами мантиссы и порядка, и только при выполнении присваивания переменной одинарной точности результат округляется. Эта возможность даёт выполнять умножение действительных чисел с двойной точностью без предварительного приведения их к типу двойной точности. На ранних этапах развития вычислительных библиотек снятие результата без округление реализовали вставками специального кода в фортран-программы, но уже в 70-х гг. XX века в ряде трансляторов Фортрана появилась функция DPROD, реализующая это без обращения программиста к машинным кодам. Она была закреплена среди стандартных функций в стандарте Фортран 77, и реализована во всех современных трансляторах Фортрана.
Для метода Холецкого существует блочная версия, которая отличается от точечной не тем, что операции над числами заменены на аналоги этих операций над блоками; её построение основано на том, что практически все циклы точечной версии имеют тип SchedDo в терминах методологии, основанной на исследовании информационного графа и, следовательно, могут быть развёрнуты. Тем не менее, обычно блочную версию метода Холецкого записывают не в виде программы с развёрнутыми и переставленными циклами, а в виде программы, подобной реализации точечного метода, в которой вместо соответствующих скалярных операций присутствуют операции над блоками.
Особенностью размещения массивов в Фортране является хранение их "по столбцам" (быстрее всего меняется первый индекс). Поэтому для обеспечения локальности работы с памятью представляется более эффективной такая схема метода Холецкого (полностью эквивалентная описанной), когда исходная матрица и её разложение хранятся не в нижнем, а в верхнем треугольнике. Тогда при вычислениях скалярных произведений программа будет "идти" по последовательным ячейкам памяти компьютера.
Есть и другой вариант точечной схемы: использовать вычисляемые элементы матрицы [math]L[/math] в качестве аргументов непосредственно «сразу после» их вычисления. Такая программа будет выглядеть так:
DO I = 1, N
A(I,I) = SQRT (A(I, I))
DO J = I+1, N
A(J,I) = A(J,I)/A(I,I)
END DO
DO K=I+1,N
DO J = K, N
A(J,K) = A(J,K) - A(J,I)*A(K,I)
END DO
END DO
END DO
Как видно, в этом варианте для реализации режима накопления одинарной точности мы должны будем объявить двойную точность для массива, хранящего исходные данные и результат. Подчеркнём, что граф алгоритма обеих схем - один и тот же (из п.1.7), если не считать изменением замену умножения на функцию DPROD!
2.2 Описание локальности данных и вычислений
2.2.1 Описание локальности реализации алгоритма
2.2.1.1 Описание структуры обращений в память и качественная оценка локальности
На рисунке 3 представлен профиль обращений в память для реализации метода Холецкого[12][13]. В программе задействован только 1 массив, поэтому в данном случае обращения в профиле происходят только к элементам этого массива. Программа состоит из одного основного этапа, который, в свою очередь, состоит из последовательности подобных итераций. Пример одной итерации выделен зеленым цветом.
Видно, что на каждой [math]i[/math]-й итерации используются все адреса, начиная с некоторого, при этом адрес первого обрабатываемого элемента увеличивается. Также можно заметить, что число обращений в память на каждой итерации растет примерно до середины работы программы, после чего уменьшается вплоть до завершения работы. Это позволяет говорить о том, что данные в программе используются неравномерно, при этом многие итерации, особенно в начале выполнения программы, задействуют большой объем данных, что приводит к ухудшению локальности.
Однако в данном случае основным фактором, влияющим на локальность работы с памятью, является строение итерации. Рассмотрим фрагмент профиля, соответствующий нескольким первым итерациям.
Исходя из рисунка 4 видно, что каждая итерация состоит из двух различных фрагментов. Фрагмент 1 – последовательный перебор (с некоторым шагом) всех адресов, начиная с некоторого начального. При этом к каждому адресу происходит мало обращений. Такой фрагмент обладает достаточно неплохой пространственной локальностью, так как шаг по памяти между соседними обращениями невелик, но плохой временно́й локальностью, поскольку данные редко используются повторно.
Фрагмент 2 устроен гораздо лучше с точки зрения локальности. В рамках этого фрагмента выполняется большое число обращений подряд к одним и тем же данным, что обеспечивает гораздо более высокую степень как пространственной, так и временно́й локальности по сравнению с фрагментом 1.
После рассмотрения фрагмента профиля на рис. 4 можно оценить общую локальность двух фрагментов на каждой итерации. Однако стоит рассмотреть более подробно, как устроен каждый из фрагментов.
Рис. 5, на котором представлена часть одной итерации общего профиля (см. рис. 3), позволяет отметить достаточно интересный факт: строение каждого из фрагментов на самом деле заметно сложнее, чем это выглядит на рис. 4. В частности, каждый шаг фрагмента 1 состоит из нескольких обращений к соседним адресам, причем выполняется не последовательный перебор. Также можно увидеть, что фрагмент 2 на самом деле в свою очередь состоит из повторяющихся итераций, при этом видно, что каждый шаг фрагмента 1 соответствует одной итерации фрагмента 2 (выделено зеленым на рис. 5). Это лишний раз говорит о том, что для точного понимания локальной структуры профиля необходимо его рассмотреть на уровне отдельных обращений.
Стоит отметить, что выводы на основе рис. 5 просто дополняют общее представлении о строении профиля обращений; сделанные на основе рис. 4 выводы относительно общей локальности двух фрагментов остаются верны.
2.2.1.2 Количественная оценка локальности
Основной фрагмент реализации, на основе которого были получены количественные оценки, приведен здесь (функция Kernel). Условия запуска описаны здесь.
Первая оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.
На рисунке 6 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Можно увидеть, что реализация метода Холецкого характеризуется достаточно высокой скоростью взаимодействия с памятью, однако ниже, чем, например, у теста Линпак или реализации метода Якоби.
Вторая характеристика – cvg – предназначена для получения более машинно-независимой оценки локальности. Она определяет, насколько часто в программе необходимо подтягивать данные в кэш-память. Соответственно, чем меньше значение cvg, тем реже это нужно делать, тем лучше локальность.
На рисунке 7 приведены значения cvg для того же набора реализаций, отсортированные по убыванию (чем меньше cvg, тем в общем случае выше локальность). Можно увидеть, что, согласно данной оценке, реализация метода Холецкого оказалась ниже в списке по сравнению с оценкой daps.
2.3 Возможные способы и особенности реализации параллельного алгоритма
Как нетрудно видеть по структуре графа алгоритма, вариантов распараллеливания алгоритма довольно много. Например, во втором варианте (см. раздел «Особенности реализации последовательного алгоритма») все внутренние циклы параллельны, в первом — параллелен цикл по [math]J[/math]. Тем не менее, простое распараллеливание таким способом «в лоб» вызовет такое количество пересылок между процессорами с каждым шагом по внешнему циклу, которое почти сопоставимо с количеством арифметических операций. Поэтому перед размещением операций и данных между процессорами вычислительной системы предпочтительно разбиение всего пространства вычислений на блоки, с сопутствующим разбиением обрабатываемого массива.
Многое зависит от конкретного типа вычислительной системы. Присутствие конвейеров на узлах многопроцессорной системы делает рентабельным параллельное вычисление нескольких скалярных произведений сразу. Подобная возможность есть и на программировании ПЛИСов, но там быстродействие будет ограничено медленным последовательным выполнением операции извлечения квадратного корня.
В принципе, возможно и использование т. н. «скошенного» параллелизма. Однако его на практике никто не использует, из-за усложнения управляющей структуры программы.
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Описание масштабируемости алгоритма
2.4.2 Описание масштабируемости реализации алгоритма
Проведём исследование масштабируемости параллельной реализации разложения Холецкого согласно методике. Исследование проводилось на суперкомпьютере "Ломоносов" Суперкомпьютерного комплекса Московского университета.
Набор и границы значений изменяемых параметров запуска реализации алгоритма:
- число процессоров [4 : 256] с шагом 4;
- размер матрицы [1024 : 5120].
В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:
- минимальная эффективность реализации 0,11%;
- максимальная эффективность реализации 2,65%.
На следующих рисунках приведены графики производительности и эффективности выбранной реализации разложения Холецкого в зависимости от изменяемых параметров запуска.
Построим оценки масштабируемости выбранной реализации разложения Холецкого:
- По числу процессов: -0,000593. При увеличении числа процессов эффективность на рассмотренной области изменений параметров запуска уменьшается, однако в целом уменьшение не очень быстрое. Малая интенсивность изменения объясняется крайне низкой общей эффективностью работы приложения с максимумом в 2,65%, и значение эффективности на рассмотренной области значений быстро доходит до десятых долей процента. Это свидетельствует о том, что на большей части области значений нет интенсивного снижения эффективности. Это объясняется также тем, что с ростом вычислительной сложности падение эффективности становится не таким быстрым. Уменьшение эффективности на рассмотренной области работы параллельной программы объясняется быстрым ростом накладных расходов на организацию параллельного выполнения. С ростом вычислительной сложности задачи эффективность снижается так же быстро, но при больших значениях числа процессов. Это подтверждает предположение о том, что накладные расходы начинают сильно превалировать над вычислениями.
- По размеру задачи: 0,06017. При увеличении размера задачи эффективность возрастает. Эффективность возрастает тем быстрее, чем большее число процессов используется для выполнения. Это подтверждает предположение о том, что размер задачи сильно влияет на эффективность выполнения приложения. Оценка показывает, что с ростом размера задачи эффективность на рассмотренной области значений параметров запуска сильно увеличивается. Также, учитывая разницу максимальной и минимальной эффективности в 2,5%, можно сделать вывод, что рост эффективности при увеличении размера задачи наблюдается на большей части рассмотренной области значений.
- По двум направлениям: 0,000403. При рассмотрении увеличения как вычислительной сложности, так и числа процессов на всей рассмотренной области значений эффективность увеличивается, однако скорость увеличения эффективности небольшая. В совокупности с тем фактом, что разница между максимальной и минимальной эффективностью на рассмотренной области значений параметров небольшая, эффективность с увеличением масштабов возрастает, но медленно и с небольшими перепадами.
Исследованная параллельная реализация на языке C
2.5 Динамические характеристики и эффективность реализации алгоритма
Для проведения экспериментов использовалась реализация разложения Холецкого, представленная в пакете SCALAPACK библиотеки Intel MKL (метод pdpotrf). Все результаты получены на суперкомпьютере «Ломоносов»Ошибка цитирования Отсутствует закрывающий тег </ref>
.
2.6 Существующие реализации алгоритма
Точечный метод Холецкого реализован как в основных библиотеках программ отечественных организаций, так и в западных пакетах LINPACK, LAPACK, SCALAPACK и др.
При этом в отечественных реализациях, как правило, выполнены стандартные требования к методу с точки зрения ошибок округления, то есть, реализован режим накопления, и обычно нет лишних операций. Ряд старых отечественных реализаций использует для экономии памяти упаковку матриц [math]A[/math] и [math]L[/math] в одномерный массив.
Реализация точечного метода Холецкого в современных западных пакетах обычно происходит из одной и той же реализации метода в LINPACK, а та использует пакет BLAS. В BLAS скалярное произведение реализовано без режима накопления, но это легко исправляется при желании.
Интересно, что в крупнейших библиотеках алгоритмов до сих пор предлагается именно разложение Холецкого, а более быстрый алгоритм LU-разложения без извлечения квадратных корней используется только в особых случаях (например, для трёхдиагональных матриц), в которых количество диагональных элементов уже сравнимо с количеством внедиагональных.
3 Литература
<references \>
- ↑ Commandant Benoit, Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky), Bulletin Géodésique 2 (1924), 67-77.
- ↑ Banachiewicz T. Principles d'une nouvelle technique de la méthode des moindres carrês. Bull. Intern. Acad. Polon. Sci. A., 1938, 134-135.
- ↑ Banachiewicz T. Méthode de résoltution numérique des équations linéaires, du calcul des déterminants et des inverses et de réduction des formes quardatiques. Bull. Intern. Acad. Polon. Sci. A., 1938, 393-401.
- ↑ Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
- ↑ Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
- ↑ Фаддеев Д.К., Фаддева В.Н. Вычислительные основы линейной алгебры. М.-Л.: Физматгиз, 1963.
- ↑ Kaporin I.E. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition. Numer. Lin. Algebra
- ↑ Капорин И.Е., Коньшин И.Н. Параллельное решение симметричных положительно-определенных систем на основе перекрывающегося разбиения на блоки. Ж. вычисл. матем. и матем. физ., 2001, Т, 41, N. 4, C. 515–528.
- ↑ Воеводин В.В. Математические основы параллельных вычислений// М.: Изд. Моск. ун-та, 1991. 345 с.
- ↑ Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. – СПб.: БХВ - Петербург, 2002. – 608 с.
- ↑ Фролов А.В.. Принципы построения и описание языка Сигма. Препринт ОВМ АН N 236. М.: ОВМ АН СССР, 1989.
- ↑ Воеводин Вад. В. Визуализация и анализ профиля обращений в память // Вестник Южно-Уральского государственного университета. Серия Математическое моделирование и про-граммирование. — 2011. — Т. 17, № 234. — С. 76–84.
- ↑ Воеводин Вл. В., Воеводин Вад. В. Спасительная локальность суперкомпьютеров // Откры-тые системы. — 2013. — № 9. — С. 12–15.