Алгоритм Тарьяна поиска «мостов» в графе: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Общее описание алгоритма)
 
Строка 17: Строка 17:
 
Алгоритм Тарьяна может работать с любым остовным деревом, поэтому можно применить эффективно параллелизуемый [[Поиск в ширину (BFS)|поиск в ширину]]. Последующие вычисления также могут быть параллелизованы.
 
Алгоритм Тарьяна может работать с любым остовным деревом, поэтому можно применить эффективно параллелизуемый [[Поиск в ширину (BFS)|поиск в ширину]]. Последующие вычисления также могут быть параллелизованы.
  
Параллельный [[Алгоритм Тарьяна поиска компонент двусвязности|алгоритм Тарьяна-Вишкина]]<ref>Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.</ref> основан на аналогичных вычислениях и может быть адаптирован для поиска мостов.
+
Параллельный [[Алгоритм Тарьяна-Вишкина поиска компонент двусвязности|алгоритм Тарьяна-Вишкина]]<ref>Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.</ref> основан на аналогичных вычислениях и может быть адаптирован для поиска мостов.
  
 
=== Описание входных и выходных данных ===
 
=== Описание входных и выходных данных ===

Версия 12:30, 7 июля 2015

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Тарьяна [1] находит мосты в неориентированном графе за время O(m).

1.2 Математическое описание

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма составляет O(m).

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

Алгоритм Тарьяна может работать с любым остовным деревом, поэтому можно применить эффективно параллелизуемый поиск в ширину. Последующие вычисления также могут быть параллелизованы.

Параллельный алгоритм Тарьяна-Вишкина[2] основан на аналогичных вычислениях и может быть адаптирован для поиска мостов.

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Tarjan, R Endre. “A Note on Finding the Bridges of a Graph.” Information Processing Letters 2, no. 6 (April 1974): 160–61. doi:10.1016/0020-0190(74)90003-9.
  2. Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.