Участник:Y.ryabkova/Умножение матриц методом Штрассена: различия между версиями
Строка 8: | Строка 8: | ||
'''Алгоритм Штрассена''', описанный в 1969 году Фолькером Штрассеном, предназначен для умножения двух произвольных матриц при условии согласованности их размеров. В данном варианте алгоритма будет рассмотрен только частный случай умножения квадратных матриц порядка <math>n</math> над полем вещественных чисел <math>\mathbb{R}</math>. <br> | '''Алгоритм Штрассена''', описанный в 1969 году Фолькером Штрассеном, предназначен для умножения двух произвольных матриц при условии согласованности их размеров. В данном варианте алгоритма будет рассмотрен только частный случай умножения квадратных матриц порядка <math>n</math> над полем вещественных чисел <math>\mathbb{R}</math>. <br> | ||
В 1965 году Штрассен нашел способ умножения двух матриц размера <math>2 \times 2</math> с использованием семи умножений, в то время как классический алгоритм перемножения матриц требует восьми умножений. Стоит отметить, что данный способ не использует свойство коммутативности для операции перемножения чисел. <br> | В 1965 году Штрассен нашел способ умножения двух матриц размера <math>2 \times 2</math> с использованием семи умножений, в то время как классический алгоритм перемножения матриц требует восьми умножений. Стоит отметить, что данный способ не использует свойство коммутативности для операции перемножения чисел. <br> | ||
− | Теперь предположим, что <math>n = 2^L</math>, <math> L \in \mathbb{N} </math> (далее будет показано, что это предположение не нарушает общности рассуждений), и будем рассматривать матрицы <math>A</math> и <math>B</math> как блочные <math>2 \times 2</math>-матрицы с размером блоков <math>\frac{n}{2} \times \frac{n}{2} </math>. Так как для блочных матриц правила умножения остаются теми же, как если бы на месте блока стояло число, а в методе Штрассена умножения <math>2 \times 2</math>-матриц не используется коммутативность, этот метод подходит и для умножения блочных <math>2 \times 2</math>-матриц. Таким образом, от задачи умножения <math>2 \times 2</math>-матриц с семью умножениями можно перейти к задаче умножения <math>n \times n</math>-матриц, требующей не более чем <math> O(7n^{\log_27}) </math> операций, что асимптотически лучше классического способа умножения матриц <math> | + | Теперь предположим, что <math>n = 2^L</math>, <math> L \in \mathbb{N} </math> (далее будет показано, что это предположение не нарушает общности рассуждений), и будем рассматривать матрицы <math>A</math> и <math>B</math> как блочные <math>2 \times 2</math>-матрицы с размером блоков <math>\frac{n}{2} \times \frac{n}{2} </math>. Так как для блочных матриц правила умножения остаются теми же, как если бы на месте блока стояло число, а в методе Штрассена умножения <math>2 \times 2</math>-матриц не используется коммутативность, этот метод подходит и для умножения блочных <math>2 \times 2</math>-матриц. Таким образом, от задачи умножения <math>2 \times 2</math>-матриц с семью умножениями можно перейти к задаче умножения <math>n \times n</math>-матриц, требующей не более чем <math> O(7n^{\log_27}) </math> операций, что асимптотически лучше классического способа умножения матриц, в котором <math>O(n^3)</math> операций. На данный момент известны и более быстрые методы умножения матриц, однако алгоритм Штрассена относительно прост в реализации и эффективен на плотных матрицах не очень больших размеров, поэтому всё ещё широко используется. |
== Математическое описание алгоритма == | == Математическое описание алгоритма == |
Версия 22:50, 16 октября 2017
Основные авторы описания: Ю.В.Рябкова
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Штрассена, описанный в 1969 году Фолькером Штрассеном, предназначен для умножения двух произвольных матриц при условии согласованности их размеров. В данном варианте алгоритма будет рассмотрен только частный случай умножения квадратных матриц порядка [math]n[/math] над полем вещественных чисел [math]\mathbb{R}[/math].
В 1965 году Штрассен нашел способ умножения двух матриц размера [math]2 \times 2[/math] с использованием семи умножений, в то время как классический алгоритм перемножения матриц требует восьми умножений. Стоит отметить, что данный способ не использует свойство коммутативности для операции перемножения чисел.
Теперь предположим, что [math]n = 2^L[/math], [math] L \in \mathbb{N} [/math] (далее будет показано, что это предположение не нарушает общности рассуждений), и будем рассматривать матрицы [math]A[/math] и [math]B[/math] как блочные [math]2 \times 2[/math]-матрицы с размером блоков [math]\frac{n}{2} \times \frac{n}{2} [/math]. Так как для блочных матриц правила умножения остаются теми же, как если бы на месте блока стояло число, а в методе Штрассена умножения [math]2 \times 2[/math]-матриц не используется коммутативность, этот метод подходит и для умножения блочных [math]2 \times 2[/math]-матриц. Таким образом, от задачи умножения [math]2 \times 2[/math]-матриц с семью умножениями можно перейти к задаче умножения [math]n \times n[/math]-матриц, требующей не более чем [math] O(7n^{\log_27}) [/math] операций, что асимптотически лучше классического способа умножения матриц, в котором [math]O(n^3)[/math] операций. На данный момент известны и более быстрые методы умножения матриц, однако алгоритм Штрассена относительно прост в реализации и эффективен на плотных матрицах не очень больших размеров, поэтому всё ещё широко используется.
1.2 Математическое описание алгоритма
Пусть [math] A, B \in \mathbb{R}^{n \times n} [/math] — заданные плотные матрицы. Вычислим матрицу [math] C \in \mathbb{R}^{n \times n} [/math], такую, что [math] C = AB [/math].
Для удобства будем полагать, что [math] n = 2^L, L \in \mathbb{N} [/math]. Это предположение не ограничивает общности рассуждений, так как если это свойство не выполнено и [math] n \lt 2^L [/math], то можно рассмотреть квадратные матрицы [math]\tilde{A}[/math] и [math]\tilde{B}[/math] порядка [math] 2^L [/math] следующего вида:
- [math] \tilde{A} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \: \: \tilde{B} = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}, [/math]
то есть матрицы, полученные из матриц [math] A [/math] и [math] B [/math] дополнением их нулевыми строками и столбцами в позициях [math] i = \overline{n+1, 2^L} [/math] до размера [math] 2^L \times 2^L [/math]. По правилу перемножения блочных матриц:
- [math] \tilde{C} = \tilde{A}\tilde{B} = \begin{bmatrix} AB & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}. [/math]
Таким образом, решая задачу для матриц [math] \tilde{A} [/math] и [math]\tilde{B} [/math], получим решение исходной задачи умножения матриц [math] A [/math] и [math] B [/math] как левый верхний [math]n \times n[/math]-блок матрицы [math]\tilde{C}[/math].
Итак, [math] n = 2^L, L \in \mathbb{N} [/math].