Уровень задачи

Умножение плотных матриц: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[досмотренная версия][досмотренная версия]
м
м
Строка 11: Строка 11:
  
 
Классический алгоритм - [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)]]. Для больших размеров существуют и более быстрые алгоритмы (метод Штрассена и т.д.).
 
Классический алгоритм - [[Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант)]]. Для больших размеров существуют и более быстрые алгоритмы (метод Штрассена и т.д.).
 +
 +
= Литература =

Версия 17:56, 6 ноября 2017


Перемножение матриц - одна из базовых задач в алгоритмах линейной алгебры, широко применяется в большом количестве разных методов. Здесь мы рассмотрим умножение [math]C = AB[/math]  плотных неособенных матриц, то есть тот вариант, где никак не может использоваться специальный вид матрицы[1].

[math] \begin{align} c_{ij} = \sum_{k = 1}^{n} a_{ik} b_{kj}, \quad i \in [1, m], \quad j \in [1, l]. \end{align} [/math]

Классический алгоритм - Перемножение_плотных_неособенных_матриц_(последовательный_вещественный_вариант). Для больших размеров существуют и более быстрые алгоритмы (метод Штрассена и т.д.).

Литература

  1. В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.