Алгоритм Крускала
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Крускала[1] предназначен для решения задачи о построении минимального остовного дерева во взвешенном неориентированном графе. В отличие от алгоритмов Прима и Борувки, алгоритм Крускала не требует информации о рёбрах конкретной вершины, вместо этого на его вход подаётся общий список рёбер графа в произвольном порядке. Кроме этого, каждое (ненаправленное) ребро достаточно представить лишь одной из его направленных дуг, что на практике означает в два раза меньший объём вычислений. Последовательная версия алгоритма Крускала работает, как правило, быстрее последовательной версии алгоритма Борувки, а при условии предварительной сортировки списка рёбер по весу сложность алгоритма снижается до [math]O(m \alpha(m, n))[/math].
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Kruskal, Joseph B. “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem.” Proceedings of the American Mathematical Society 7, no. 1 (January 1956): 48–48. doi:10.1090/S0002-9939-1956-0078686-7.