Участник:Смирнова Александра/Нахождение собственных чисел квадратной матрицы методом QR разложения (3)
Эта работа прошла предварительную проверку Дата последней правки страницы: 13.11.2016 Данная работа соответствует формальным критериям. Проверено VadimVV. |
Нахождение собственных чисел квадратной матрицы методом QR разложения | |
Последовательный алгоритм | |
Последовательная сложность | [math]N*O(n^3)[/math] |
Объём входных данных | [math] n^2 [/math] |
Объём выходных данных | [math] n [/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]N*O(n)[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Основные авторы описания:
- Смирнова А.С. - описание теоретической части
- Киямова А. - описание программистской части
Содержательно все пункты обсуждались авторами вместе, и их вклад был равным.
Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких чисел [math]\lambda[/math], которые удовлетворяют уравнению:
[math]Ax=\lambda x[/math], при этом, числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами[1].
Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел матрицы. При этом алгоритм позволяет найти и собственные вектора матрицы. Он был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма[2].
Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.
Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существует несколько способов ускорить его:
- Перед итерациями привести матрицу [math]A[/math] к подобной ей матрице [math]A_H[/math], которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения.
- Использовать QR-алгоритм со сдвигами. Это позволит уменьшить количество итераций алгоритма.
В дальнейшем, в данной статье под модифицированным алгоритмом будет пониматься алгоритм, использующий сдвиги и матрицу с формой Хессенберга. Под базовым алгоритмом будет пониматься алгоритм, не использующий данные приемы.
1.2 Математическое описание алгоритма
1.2.1 QR-разложение матрицы
Основой алгоритма является тот факт, что любую вещественную матрицу можно разложить на произведение двух матриц следующего вида:
- [math]A=QR[/math], где [math]Q[/math] - ортогональная матрица ([math]Q^T=Q^{-1}[/math]), [math]R[/math] - верхняя треугольная матрица.
Данное разложение называется QR-разложением.
Есть несколько алгоритмов вычисления QR-разложения матрицы[3] [4]. Кратко опишем их в данной статье.
1.2.1.1 Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
- Основная статья: Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
Суть метода Хаусхолдера заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы отражения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц отражения.
На [math]i[/math]-ом шаге задача [math]i[/math]-ой матрицы отражения заключается в обнулении всех поддиагональных элементов [math]i[/math]-го столбца матрицы [math]A[/math] (при этом столбцы левее [math]i[/math]-го не изменяются). Таким образом, алгоритм состоит из [math]n[/math] шагов, на каждом из которых вычисляется очередная матрица отражения, после чего найденное отражение применяется к матрице, которая является результатом предыдущего шага.
Матрица отражения имеет вид [math]E-\frac{1}{\gamma }vv^*[/math], где вектор [math]v[/math] вычисляется из текущего [math]i[/math]-го столбца матрицы при помощи использования операции скалярного произведения векторов. Данное представление матриц отражения позволяет хранить их в виде одного вектора и сводит домножение матрицы отражения на текущую матрицу к арифметическим операциям над векторами (скалярное произведение и сложение векторов).
1.2.1.2 Метод Гивенса (вращений) QR-разложения квадратной матрицы
- Основная статья: Метод Гивенса (вращений) QR-разложения квадратной матрицы
Суть метода Гивенса заключается в последовательном приведении матрицы [math]A[/math] к верхней треугольной форме при помощи домножения ее на так называемые матрицы вращения. Получившаяся треугольная матрица будет искомой матрицей [math]R[/math], а матрица [math]Q[/math] будет равна произведению сопряженных матриц вращения.
На каждом шаге задачей матрицы вращения является обнуление одного поддиагонального элемента. Вначале обнуляются все поддиагональные элементы 1-го столбца, затем 2-го и так далее до [math](n-1)[/math]-го. Таким образом, алгоритм состоит из [math]\frac{n(n-1)}{2}[/math] шагов на каждом из которых вычисляется очередная матрица вращения, после чего она применяется к матрице, которая является результатом предыдущего шага.
Матрицы вращения [math]T_{ij}[/math] по ствоей структуре очень близки к единичным матрицам, за исключением четырех элементов: элементы с номерами [math]ii[/math] и [math]jj[/math] содержат некоторое число-параметр [math]c[/math], элементы с номерами [math]ij[/math] и [math]ji[/math] содержат числа-параметры [math]-s[/math] и [math]s[/math] соответственно. Вычисление параметров [math]c[/math] и [math]s[/math] происходит на каждом шаге в зависимости от текущей матрицы и состоит из простых численных арифметических операций. Умножение матрицы вращения на текущую матрицу может быть представлено как последовательное изменение элементов с номерами [math]ik[/math] и [math]kk[/math] для всех столбцов [math]k[/math] находящихся правее столбца [math]i[/math]. Каждое такое изменение по своей структуре эквивалентно операции перемножения двух комплексных чисел.
1.2.2 QR-алгоритм нахождения собственных чисел
Пусть матрица [math]A[/math] - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом:
- [math]A_0=A[/math].
- Пусть имеется матрица [math]A_k[/math], тогда матрица [math]A_{k+1}[/math] строится следующим образом:
- Строится QR-разложение: [math]A_k=Q_kR_k[/math].
- Вычисляется [math]A_{k+1}=R_kQ_k[/math].
Заметим, что [math]A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k[/math].
Таким образом матрицы [math]A_{k+1}[/math] и [math]A_{k}[/math] подобны для [math]\forall k[/math], а значит, в силу транзитивности подобия, все матрицы [math]A_{k}[/math] подобны матрице [math]A[/math] и имеют одинаковый набор собственных значений.
1.2.3 Сходимость алгоритма
Предположим, что для [math]\forall m[/math] выполнены следующие условия:
- 1. [math]A=X\Lambda X^{-1}[/math], где [math]\Lambda =\begin{bmatrix} \Lambda_1 & 0\\ 0 & \Lambda_2 \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} [/math].
- 2. [math]\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | \gt \left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | \gt 0 [/math], где [math]\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) [/math].
- 3. Ведущая подматрица порядка [math]m[/math] в [math]X^{-1}[/math] невырождена.
Тогда при [math] k \rightarrow \infty [/math] последовательность матриц [math]A_k[/math] сходится к матрице с верхней треугольной формой[5].
Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица [math]A_k[/math] не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью [math]\varepsilon[/math]). Если итерации закончились на шаге [math]N[/math], то числа на диагонали матрицы [math]A_N[/math] будут считаться собственными значениями матрицы [math]A[/math].
1.2.4 Вещественный вариант QR-алгоритма
Если вещественная матрица [math]A[/math] имеет различные вещественные собственные значения, то, как было описано ранее, QR-алгоритм сходится к матрице с верхней треугольной формой, на диагонали которой находятся собственные значения. Однако вещественная матрица может иметь комплексные собственные значения. В данном случае алгоритм будет сходиться не к верхней треугольной матрице, а к блочной верхней треугольной матрице, которая на диагонали содержит блоки 1-го и 2-го порядка. Блоки 1-го порядка содержат различные вещественные собственные значения, блоки 2-го порядка соответствуют парам комплексных сопряженных собственных значений[6].
[math]A_N= \begin{bmatrix} \blacksquare& \bullet& \bullet& \cdots& \cdots& \cdots& \cdots& \cdots& \bullet\\ 0& \blacksquare& \blacksquare& \bullet& \ddots& \ddots& \ddots& \ddots& \vdots\\ 0& \blacksquare& \blacksquare& \bullet& \bullet& \ddots& \ddots& \ddots& \vdots\\ \vdots& 0& 0& \blacksquare& \bullet& \bullet& \ddots& \ddots& \vdots\\ \vdots& \ddots& 0& 0& \blacksquare& \bullet& \bullet& \ddots& \vdots\\ \vdots& \ddots& \ddots& 0& 0& \blacksquare& \blacksquare& \ddots& \vdots\\ \vdots& \ddots& \ddots& \ddots& 0& \blacksquare& \blacksquare& \ddots& \bullet\\ \vdots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \bullet\\ 0& \cdots& \cdots& \cdots& \cdots& \cdots& 0& 0& \blacksquare \end{bmatrix}[/math].
В дальнейшем, в данной статье, матрицы, имеющие вышеописанную форму, будут называться квазитреугольными.
1.2.5 Приведение матрицы к форме Хессенберга
Матрицей, имеющей форму Хессенберга, называется такая матрица, у которой все элементы, находящиеся ниже первой поддиагонали, равны нулю ([math]a_{ij}=0[/math] при [math]i\lt j+1[/math]). Пример такой матрицы приведен ниже:
[math]\begin{bmatrix} 1& 2& 3& 4\\ 2& 5& 6& 7\\ 0& 3& 8& 9\\ 0& 0& 4& 1 \end{bmatrix}[/math]
Любую матрицу [math]A[/math] можно привести к подобной ей матрице [math]A_H[/math], имеющей форму Хессенберга (в силу подобия данные матрицы будут иметь одинаковые собственные значения). Наличие нулевых элементов в данной матрице позволяет ускорить процесс QR-разложения, причем данное ускорение будет иметь место на каждой итерации алгоритма, т.к. матрица с формой Хессенберга инвариантна относительно QR-итерации. Ускорение можно получить за счет использования модифицированного метода Гивенса(вращений) QR-разложения, который из-за изначального наличия нулевых элементов будет состоять не из [math]\frac{n(n-1)}{2}[/math] шагов, а из [math]n-1[/math] шагов (будет происходить домножение только на те матрицы вращения [math]T_{ij}[/math], у которых [math]i=j+1[/math]).
Одним из способов приведения матрицы к форме Хессенберга является преобразование Хаусхолдера[7]. Данный алгоритм состоит из [math]n-1[/math] итераций. Пусть имеется матрица [math]A^{(k)}[/math], тогда для перехода к матрице [math]A^{(k+1)}[/math] проделывается следующее:
- Вычисление параметра [math]\alpha[/math]: [math]\alpha=-sgn(a_{k+1,k}^{(k)})\sqrt{\sum_{j=k+1}^{n}(a_{j,k}^{(k)})^2}[/math]
- Вычисление параметра [math]r[/math]: [math]r=\sqrt{\frac{1}{2}(\alpha^2-a_{k+1,k}^{(k)}\alpha )}[/math]
- Вычисление вектора [math]v^{(k)}=\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}[/math], где [math]v_{1}^{(k)}=v_{2}^{(k)}=...=v_{k}^{(k)}=0, v_{k+1}^{(k)}=\frac{a_{k+1,k}^{(k)}-\alpha}{2r}[/math], а остальные элементы [math]v_{j}^{(k)}=\frac{a_{jk}^{(k)}}{2r}[/math].
- Вычисление матрицы [math]P^{(k)}[/math]: [math]P^{(k)}=E-2v^{(k)}(v^{(k)})^T[/math]
- Вычисление матрицы [math]A^{(k+1)}[/math]: [math]A^{(k+1)}=P^{(k)}A^{(k)}(P^{(k)})^T[/math]. Важно отметить, что форма, которой обладают матрицы [math]P^{(k)}[/math], позволяет свести данную операцию перемножения матриц к менее затратным операциям перемножения матрицы на вектор.
1.2.6 QR-алгоритм со сдвигами
QR-алгоритм со сдвигами позволяет сократить количество итераций, необходимых для сходимости[8]. Пусть у нас есть матрица [math]A_k[/math], тогда процесс перехода к матрице [math]A_{k+1}[/math] выглядит следующим образом:
- На каждом шаге подбирается число [math]\nu_k[/math] и ищется следующее QR-разложение: [math]A_k-\nu_kE=Q_kR_k[/math].
- Вычисляется матрица [math]A_{k+1}[/math]: [math]A_{k+1} = R_kQ_k+\nu_kE[/math].
При этом сохраняется свойство подобия матриц [math]A_k[/math] и [math]A_{k+1}[/math]:
[math]A_{k+1} = R_kQ_k+\nu_kE=Q_{k}^{T}Q_kR_kQ_k+\nu_kE=Q_{k}^{T}(A_k-\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-Q_{k}^{T}(\nu_kE)Q_k+\nu_kE=Q_{k}^{T}A_kQ_k-\nu_kE+\nu_kE=Q_{k}^{T}A_kQ_k[/math].
1.2.6.1 Подбор параметра [math]\nu_k[/math]
//TODO
1.3 Вычислительное ядро алгоритма
1.3.1 Базовый алгоритм
QR-алгоритм обладает двумя вычислительными ядрами, которые повторяются на каждой итерации:
- Вычисление QR-разложения матрицы: [math]A_k=Q_kR_k[/math]. Существует несколько методов решения данной задачи:
- Метод Хаусхолдера (отражений): вычислительное ядро данного алгоритма состоит из операций скалярного произведения, необходимых для вычисления матрицы отражения, и из операций скалярного произведения, необходимых для пересчета матрицы на каждом шаге.
- Метод Гивенса (вращений): вычислительное ядро данного алгоритма состоит из численных арифметических операций, необходимых для вычисления параметров матрицы вращения, и из операций (эквивалентных перемножению комплексных чисел), необходимых для пересчета матрицы на каждом шаге.
- Перемножение двух плотных матриц: [math]A_{k+1}=R_kQ_k[/math].
1.3.2 Модифицированный алгоритм
Модифицированный QR-алгоритм обладает тремя вычислительными ядрами, первое вычисляется единожды, второе и третье повторяются на каждой итерации:
- Приведение изначальной матрицы к форме Хессенберга: вычислительным ядром данного алгоритма является подсчет матрицы [math]A^{(k+1)}=P^{(k)}A^{(k)}(P^{(k)})^T[/math].
- Вычисление QR-разложения матрицы: [math]A_k-\nu_kE=Q_kR_k[/math] при помощи модифицированного метода Гивенса (вращений). Описание вычислительного ядра не отличается от приведенного в описании базового алгоритма, единственная разница заключается в значительно меньшем количестве матриц вращения.
- Перемножение двух плотных матриц: [math]A_{k+1}-\nu_kE=R_kQ_k[/math].
1.4 Макроструктура алгоритма
Как уже было описано ранее, базовый QR-алгоритм содержит в себе две макрооперации:
- Вычисление QR-разложения матрицы: [math]A_k=Q_kR_k[/math].
- Перемножение двух плотных матриц: [math]A_{k+1}=R_kQ_k[/math].
В случае модифицированного QR-алгоритма появляется еще макрооперация приведения матрицы к форме Хессенберга.
1.5 Схема реализации последовательного алгоритма
1.5.1 Базовый алгоритм
Опишем необходимый для реализации цикл при помощи псевдокода:
A - исходная матрица. curA - текущая матрица, на основе которой будет вычисляться QR-разложение на каждом шаге. nextA - новая матрица, полученная после перемножения матриц R и Q. triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов).
curA = A nextA = A while ( not (triangular(nextA) & difference(curA,nextA,eps)) ) { curA = nextA findQRdecomposition(curA,Q,R) nextA = R*Q }
1.5.2 Модифицированный алгоритм
A - исходная матрица. curA - текущая матрица, на основе которой будет совершаться сдвиг и вычисляться QR-разложение на каждом шаге. nextA - новая матрица, полученная после перемножения матриц R и Q. nu - параметр сдвига shiftA - текущая матрица со сдвигом. triangular - функция, проверяющая, имеет ли матрица квазитреугольную форму. difference - функция, проверяющая, что элементы двух матриц, стоящие на одинаковых местах, различаются не более чем на eps (данная функция нужна чтобы проверять не только сходимость матрицы к квазитреугольной форме, но и сходимость ее ненулевых элементов).
curA = A nextA = A while ( not (triangular(nextA) & difference(curA,nextA,eps)) ) { curA = nextA nu = computeNu(curA) shiftA = curA - nu*E findQRdecomposition(shiftA,Q,R) nextA = R*Q + nu*E }
1.6 Последовательная сложность алгоритма
Подсчитаем сложность одной итерации QR-алгоритма (расчет сложностей для QR-разложения и перемножения матриц представлен в статьях, посвященных данным алгоритмам).
- QR-разложение матрицы.
- Метод Хаусхолдера (отражений) имеет сложность [math]\frac{4}{3}n^3[/math].
- Метод Гивенса (вращений) имеет сложность [math]2n^3[/math].
- Перемножение двух плотных матриц имеет сложность [math]n^3[/math].
- Проверка матрицы на квазитреугольную форму состоит из набора сравнений элементов с номерами [math]ij[/math] ([math]i\gt j+1[/math]) с нулем (таких элементов [math]\frac{(n-2)(n-1)}{2}[/math]). Поддиагональные элементы с номерами [math]ij[/math] ([math]i=j+1[/math]) должны быть проверены на соответствие необходимой квазитреугольной форме. Для этого достаточно для каждого такого элемента проверить следующее условие: [math]a_{i+1,i}==0 \vee a_{i,i-1}==0 \wedge a_{i+2,i+1}==0[/math] (либо поддиагональный элемент равен 0, либо, в противном случае, соседние поддиагональные элементы равны 0, чтобы текущий элемент соответствовал блоку 2-го порядка). Таких проверок поддиагональных элементов будет [math]n-1[/math]. После данных проверок следует набор логических операций "И" между результатами всех сравнений (таких операций будет [math]\frac{n(n-1)}{2}-1[/math]).
- Сравнение новой матрицы с предыдущей состоит из операций вычитания и сравнения для каждой пары ненулевых соответствующих элементов (такие пары имеют номера элементов [math]ij[/math] ([math]i \geq j+1[/math]), количество таких пар равно [math]\frac{n(n+1)}{2}+(n-1)[/math]), а также из набора логических операций "И" между результатами сравнений (таких операций будет [math]\frac{n(n+1)}{2}+(n-1)-1[/math]).
Итого, в сумме получаем [math]O(n^3)[/math] - сложность алгоритма на каждой итерации. Если алгоритм остановился на итерации с номером [math]N[/math], то общая сложность алгоритма будет равна [math]N*O(n^3)[/math].
1.7 Информационный граф
На рисунке 1 изображен информационный граф QR-алгоритма. Вершины данного графа обозначают следующее:
- QR - операция QR-разложения матрицы.
- *M - операция перемножения матриц.
- Triang - операция проверки матрицы на квазитреугольную форму.
- Dif - операция проверки различия элементов двух матриц не более чем на некоторое заданное число.
Подробные графы операций QR-разложения (Метод Хаусхолдера (отражений), Метод Гивенса (вращений)) и перемножения матриц можно найти в статьях, посвященных этим алгоритмам. Далее рассмотрим информационные графы операций Triang (рис.2) и Dif (рис.3) на примере матрицы размера [math]5 \times 5[/math]. Графы для других матриц выглядят аналогичным образом.
Вершины V соответствуют операции сравнения с 0. Вершины F соответствуют проверке поддиагональных элементов на соответствие квазитреугольной форме, которая была описана в предыдущем разделе. Вершины & соответствуют логической операции "И".
Вершины -V соответствуют операции вычитания и сравнения с 0. Вершины & соответствуют логической операции "И".
1.8 Ресурс параллелизма алгоритма
На макроуровне (который можно увидеть на информационном графе QR-алгоритма) алгоритм не обладает ресурсами параллелизма. Все макрооперации внутри итерации, а также сами итерации выполняются последовательно (за исключением операций Triag и Dif, которые могут выполняться параллельно). Основной ресурс параллелизма заложен отдельно в каждой из макроопераций. На каждой итерации алгоритм имеет следующие параллельные характеристики:
- QR-разложение матрицы (описание ресурсов параллелизма для алгоритмов QR-разложения можно найти в статьях, посвященных этим алгоритмам).
- Метод Хаусхолдера (отражений) имеет высоту ярусно-параллельной формы [math]O(n^2)[/math] и ширину ярусно-параллельной формы [math]O(n)[/math].
- Метод Гивенса (вращений) имеет высоту ярусно-параллельной формы [math]11n-16[/math] и ширину ярусно-параллельной формы [math]O(n^2)[/math].
- Перемножение двух плотных матриц имеет высоту ярусно-параллельной формы [math]n[/math] и ширину ярусно-параллельной формы [math]n^2[/math].
- Проверка матрицы на выходе из итерации.
- Проверка матрицы на квазитреугольную форму состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Для вычисления итогового результата можно использовать метод сдваивания, который дает высоту ярусно-параллельной формы порядка логарифма от количества элементов, над которыми совершается операция. Таким образов высота ярусно-параллельной формы будет равна [math]O(log_2n)[/math]. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна [math]O(n^2)[/math].
- Сравнение новой матрицы с предыдущей состоит из одного яруса сравнений для каждого элемента и последующих ярусов, вычисляющих итоговый результат при помощи логической операции "И". Высота ярусно-параллельной формы будет равна [math]O(log_2n)[/math]. Ширина ярусно-параллельной формы достигается на ярусе сравнений для каждого элемента и равна [math]O(n^2)[/math].
Таким образом, основной вклад в высоту ярусно-параллельной формы одной итерации вносит операция QR-разложения матрицы и она будет равна [math]O(n)[/math], если использовать метод Гивенса. Ширина ярусно-параллельной формы будет равна [math]O(n^2)[/math]. Если алгоритм остановился на итерации с номером [math]N[/math], то параллельные характеристики для всего алгоритма будут равны [math]N*O(n)[/math] для высоты и [math]O(n^2)[/math] для ширины ярусно-параллельной формы.
1.9 Входные и выходные данные алгоритма
Входные данные:
- квадратная вещественная плотная матрица [math]A[/math]: [math]A \in \R^{n \times n}[/math].
Объем входных данных:
- [math]n^2[/math] (необходимо хранить все элементы матрицы).
Выходные данные:
- собственные значения матрицы [math]A[/math].
Объем выходных данных:
- [math]n[/math] (квадратная матрица размера [math]n \times n[/math] имеет ровно [math]n[/math] собственных значений при этом некоторые из них могут быть комплексными).
1.10 Свойства алгоритма
- Cоотношение последовательной и параллельной сложности алгоритма квадратично, что дает довольно большой выигрыш.
- Вычислительная мощность, которая показывает, сколько операций приходится на единицу переданных данных, равна [math]\frac{N*O(n^3)}{n^2+n}=N*O(n)[/math], а значит перемещение данных для их обработки не будет составлять большой проблемы.
- Алгоритм является недетерминированным, т.к. заранее неизвестно сколько итераций необходимо совершить до момента сходимости.
- Скорость сходимости алгоритма зависит от собственных значений. Чем ближе по модулю соседние собственные значения, тем меньше скорость сходимости. Этот недостаток призван решить QR-алгоритм со сдвигами.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
2.7.1 Последовательные реализации
- LAPACK (Linear Algebra PACKage) — библиотека с открытым исходным кодом, содержащая методы для решения основных задач линейной алгебры. Написана на языке Fortran с использованием библиотеки BLAS и является развитием пакета LINPACK. Находится в открытом доступе в соответствии с модифицированной лицензией BSD, в том числе и для коммерческого использования.
- ALGLIB - это кросс-платформенная библиотека численного анализа, поддерживающая несколько языков программирования (C++, C#, Pascal, VBA) и несколько операционных систем (Windows, Linux, Solaris). ALGLIB является свободным программным обеспечением, которое использует двойное лицензирование: оно может быть использовано в соответствии с лицензией GPL (версии 2+), а для использования в коммерческих целях необходимо купить отдельную лицензию.
- Полный алгоритм нахождения собственных значений: подпрограмма RMatrixEVD.
- QR-разложение: подпрограмма rmatrixqr реализует QR-разложение для вещественных матриц, cmatrixqr – для комплексных матриц.
- Перемножение матриц: для перемножения матриц ALGLIB использует соответствующую реализацию библиотеки BLAS.
- Eigen – библиотека шаблонов для линейной алгебры, написанная на языке C++. Eigen – свободно распространяемое программное обеспечение. Начиная с версии 3.1.1, оно лицензируется MPL2, на ранние версии распространяется действие лицензии LGPL3+.
- Полный алгоритм нахождения собственных значений: модуль Eigenvalues module.
- QR-разложение: модуль QR module.
- Перемножение матриц: операторы * и *=.
2.7.2 Параллельные реализации
- ScaLAPACK (Scalable Linear Algebra PACKage) — библиотека с открытым исходным кодом, включающая в себя подмножество процедур LAPACK, переработанных для использования на MPP-компьютерах. ScaLAPACK разработана с использованием PBLAS и BLACS, и предназначена для вычислений на любом компьютере или кластере поддерживающим MPI или PVM. Библиотека в настоящее время написана на языке Fortran. Находится в открытом доступе в соответствии с модифицированной лицензией BSD, в том числе и для коммерческого использования.
- PLAPACK (Parallel Linear Algebra Package) — пакет функций LAPACK для параллельного решения задач линейной алгебры. Пакет функций PLAPACK является альтернативой библиотеке ScaLAPACK. Для осуществления межпроцессорных коммуникаций в PLAPACK использован интерфейс передачи сообщений MPI. При передаче сообщений в PLAPACK в основном используются коллективные операции, такие, как обобщенная передача данных от одного процесса всем процессам (MPI_Scatter), обобщенная передача данных от всех процессов одному процессу (MPI_Gather), широковещательная рассылка (MPI_Bcast) и другие. PLAPACK включает интерфейсы для языков Fortran и С.
3 Литература
- ↑ Ильин В.А., Ким Г.Д. "Линейная алгебра и аналитическая геометрия".
- ↑ Wikipedia: QR-algorithm
- ↑ Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы
- ↑ Метод Гивенса (вращений) QR-разложения квадратной матрицы
- ↑ Тыртышников Е.Е. "Методы численного анализа" — М., Академия, 2007. - 320 c.
- ↑ R. Granat, Bo Kagstrom, D. Kressner "LAPACK Working Note #216: A novel parallel QR algorithm for hybrid distributed memory HPC systems".
- ↑ Wikipedia: Householder transformation
- ↑ Бахвалов Н.С., Жидков Н.П., Кобельков. Г.М. "Численный методы"— 6-е изд. — М. : БИНОМ. Лаборатория знаний, 2008. — 636 с.