Метод ортогонализации
Ортогонализация Грама-Шмидта — это один из методов, в которых на основе множества линейно независимых векторов {\displaystyle \mathbf {a} _{1},\;\ldots ,\;\mathbf {a} _{N}} строится множество ортогональных векторов {\displaystyle \mathbf {b}_{1},\;\ldots ,\;\mathbf {b} _{N}} или ортонормированных векторов {\displaystyle \mathbf {e} _{1},\;\ldots ,\;\mathbf {e}_{N}} , причём так, что каждый вектор {\displaystyle \mathbf {b} _{j}} или {\displaystyle \mathbf {e} _{j}} может быть выражен линейной комбинацией векторов {\displaystyle \mathbf {a} _{1},\;\ldots ,\; \mathbf {a} _{j}}. Данный процесс может быть использован для получения QR-разложения, в которой систему исходных векторов образуют столбцы исходной матрицы, а столбцы матрицы Q представляют из себя набор полученных при ортогонализации векторов. Таким образом, в отличие от методов Гивенса (вращений) и Хаусхолдера (отражений), основанных на приведении матрицы левыми унитарными/ортогональными преобразованиями к треугольному виду, метод ортогонализации основан на приведении матрицы правыми неортогональными (можно сказать, треугольными) преобразованиями к унитарному/ортогональному виду.